相关习题
 0  262010  262018  262024  262028  262034  262036  262040  262046  262048  262054  262060  262064  262066  262070  262076  262078  262084  262088  262090  262094  262096  262100  262102  262104  262105  262106  262108  262109  262110  262112  262114  262118  262120  262124  262126  262130  262136  262138  262144  262148  262150  262154  262160  262166  262168  262174  262178  262180  262186  262190  262196  262204  266669 

科目: 来源: 题型:

【题目】已知函数

1)抛物线的开口向 、对称轴为直线 、顶点坐标

2)当 时,函数有最 值,是

3)当 时,的增大而增大;当 时,的增大而减小;

4)该函数图象可由的图象经过怎样的平移得到的?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动点到定点的距离比到定直线的距离小1.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点.设线段 的中点分别为,求证:直线恒过一个定点;

(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】党的十九大报告指出,要推进绿色发展,倡导“简约知适度、绿色低碳”的生活方式,开展创建“低碳生活,绿色出行”等行动.在这一号召下,越来越多的人秉承“能走不骑,能骑不坐,能坐不开”的出行理念,尽可能采取乘坐公交车骑自行车或步行等方式出行,减少交通拥堵,共建清洁、畅通高效的城市生活环境.某市环保机构随机抽查统计了该市部分成年市民某月骑车次数,统计如下:

次数

人数

年龄

18岁至31岁

8

12

20

60

140

150

32岁至44岁

12

28

20

140

60

150

45岁至59岁

25

50

80

100

225

450

60岁及以上

25

10

10

19

4

2

联合国世界卫生组织于2013年确定新的年龄分段:44岁及以下为青年人,45岁至59岁为中年人,60岁及以上为老年人.

(I)若从被抽查的该月骑车次数在的老年人中随机选出两名幸运者给予奖励,求其中一名幸运者该月骑车次数在之间,另一名幸运者该月骑车次数在之间的概率;

(Ⅱ)用样本估计总体的思想,解决如下问题:

()估计该市在32岁至44岁年龄段的一个青年人每月骑车的平均次数;

() 若月骑车次数不少于30次者称为“骑行爱好者”,根据这些数据,能否在犯错误的概率不超过0.001的前提下认为“骑行爱好者”与“青年人”有关?

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】已知都是定义域为的连续函数.已知:满足:①当时,恒成立;②都有满足:①都有②当时,.若关于的不等式恒成立,则的取值范围是

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)若函数上单调递减,求实数的取值范围;

2)是否存在实数,使得上的值域恰好是?若存在,求出实数的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等差数列{an}满足a3=2,前3项和为S3.

(1)求{an}的通项公式;

(2)设等比数列{bn}满足b1a1b4a15,求{bn}的前n项和Tn.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校调查了20个班中有网上购物经历的人数,得到了如图所示的茎叶图,以为分组,作出这组数的频率分布直方图,并说明频率分布直方图与茎叶图之间的关系.

0

1

2

3

7 3

7 6 4 4 3 0

7 5 5 4 3 2 0

8 5 4 3 0

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,点列满足:,均在坐标轴上,则向量()

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(Ⅰ)设,讨论的单调性;

(Ⅱ)若对任意恒有,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)若的极值点, 求函数的单调性;

(2)若时,,求的取值范围.

查看答案和解析>>

同步练习册答案