科目: 来源: 题型:
【题目】,两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:
组:10,11,12,13,14,15,16
组:12,13,15,16,17,14,
假设所有病人的康复时间互相独立,从,两组随机各选1人,组选出的人记为甲,组选出的
人记为乙.
(Ⅰ)求甲的康复时间不少于14天的概率;
(Ⅱ)如果,求甲的康复时间比乙的康复时间长的概率;
(Ⅲ)当为何值时,,两组病人康复时间的方差相等?(结论不要求证明)
查看答案和解析>>
科目: 来源: 题型:
【题目】近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
厨余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(1)试估计厨余垃圾投放正确的概率P;
(2)试估计生活垃圾投放错误的概率;
(3)假设厨余垃圾在“厨余垃圾”箱,“可回收物”箱,“其他垃圾”箱的投放量分别为a、b、c,其中a>0,a+b+c=600. 当数据a、b、c的方差s2最大时,写出a、b、c的值(结论不要求证明),并求出此时s2的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】一种电路控制器在出厂时,每3件一等品应装成一箱,工人装箱时,不小心将2件二等品和1件一等品装入了一箱,为了找出该箱中的二等品,对该箱中的产品逐件进行测试,假设检测员不知道该箱产品中二等品的具体数量,求:
(1)仅测试2件就找到全部二等品的概率;
(2)测试的第2件产品是二等品的概率;
(3)到第3次才测试出全部二等品的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业2017年的纯利润为500万元,因设备老化等原因,企业的生产能力逐年下降,若不能进行技术改造,预测从2018年起每年比上一年纯利润减少20万元,2018年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第年(以2018年为第一年)的利润为万元(为正整数).
(1)设从今年起的前年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求,的表达式;
(2)依上述预测,从2018年起该企业至少经过多少年,进行技术改造后的累计利润超过不进行技术改造的累计纯利润?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的右焦点为,坐标原点为.椭圆的动弦过右焦点且不垂直于坐标轴, 的中点为,过且垂直于线段的直线交射线于点
(I)证明:点在直线上;
(Ⅱ)当四边形是平行四边形时,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从种植有甲、乙两种麦苗的两块试验田中各抽取6株麦苗测量株高,得到的数据如下(单位:cm):
甲:9,10,11,12,10,20;
С:8,14,13,10,12,21.
(1)选择合适的统计图表表示上述数据;
(2)分别计算两组数据的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是一个半径为2千米,圆心角为的扇形游览区的平面示意图是半径上一点,是圆弧上一点,且.现在线段,线段及圆弧三段所示位置设立广告位,经测算广告位出租收入是:线段处每千米为元,线段及圆弧处每千米均为元.设弧度,广告位出租的总收入为元.
(1)求关于的函数解析式,并指出该函数的定义域;
(2)试问:为何值时,广告位出租的总收入最大?并求出其最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com