相关习题
 0  262018  262026  262032  262036  262042  262044  262048  262054  262056  262062  262068  262072  262074  262078  262084  262086  262092  262096  262098  262102  262104  262108  262110  262112  262113  262114  262116  262117  262118  262120  262122  262126  262128  262132  262134  262138  262144  262146  262152  262156  262158  262162  262168  262174  262176  262182  262186  262188  262194  262198  262204  262212  266669 

科目: 来源: 题型:

【题目】已知函数.

(1)当时,求处切线方程;

(2)讨论的单调区间;

(3)试判断的实根个数说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法不正确的个数有( )

甲、乙两学生参与某考试,设命题:甲考试及格, :乙考试及格,则命题“至少有一位学生不及格”可表示为.命题“对,都有”的否定为“,使得”.“若,则”是假命题.④“”是“”的必要不充分条件.⑤函数是偶函数

A. 0个 B. 1个 C. 2个 D. 3个

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(1)求函数在区间上的最小值;

(2)讨论在区间上的极值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论的导函数的零点个数;

(2)当时,证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:

经计算: ,其中分别为试验数据中的温度和死亡株数, .

(1)若用线性回归模型,求关于的回归方程(结果精确到);

(2)若用非线性回归模型求得关于的回归方程为,且相关指数为.

(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;

(ii)用拟合效果好的模型预测温度为时该批紫甘薯死亡株数(结果取整数).

附:对于一组数据 …… ,其回归直线的斜率和截距的最小二乘估计分别为: ;相关指数为: .

查看答案和解析>>

科目: 来源: 题型:

【题目】为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如表所示:

组别

候车时间

人数

2

6

4

2

1

(1)估计这60名乘客中候车时间少于10分钟的人数;

(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自同一组的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,求证: .

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知曲线和曲线交于两点之间),且,求实数的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】分别为函数的导函数.若存在,满足,则称为函数的一个“S点”

(1)证明:函数不存在“S点”

(2)若函数存在“S点”,求实数a的值;

(3)已知函数.对任意,判断是否存在,使函数在区间内存在“S点”,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义在上的奇函数满足 为数列的前项和,且,则__________

查看答案和解析>>

同步练习册答案