相关习题
 0  262021  262029  262035  262039  262045  262047  262051  262057  262059  262065  262071  262075  262077  262081  262087  262089  262095  262099  262101  262105  262107  262111  262113  262115  262116  262117  262119  262120  262121  262123  262125  262129  262131  262135  262137  262141  262147  262149  262155  262159  262161  262165  262171  262177  262179  262185  262189  262191  262197  262201  262207  262215  266669 

科目: 来源: 题型:

【题目】一只红铃虫的产卵数和温度有关,现收集了6组观测数据如下表:

温度

21

24

25

27

29

32

产卵数/

7

11

21

24

66

115

1.946

2.398

3.045

3.178

4.191

4.745

I)以温度为23252729的数据分别建立:①之间线性回归方程,②之间线性回归方程

(Ⅱ)若以(Ⅰ)所得回归方程预测,得到温度为2132的数据如下:

温度

21

32

-11.5

80.94

1.825

4.857

试以上表数据说明①②两个模型,哪个拟合的效果更好.

参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆离心率为,四个顶点构成的四边形的面积是4.

(Ⅰ)求椭圆的方程;

(Ⅱ)若直线与椭圆交于均在第一象限,轴、轴分别交于两点,设直线的斜率为,直线的斜率分别为,且(其中为坐标原点).证明: 直线的斜率为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在矩形中,,,的中点,将沿向上折起,使平面平面

(Ⅰ)求证:;

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】因客流量临时增大,某鞋店拟用一个高为50(即)的平面镜自制一个竖直摆放的简易鞋镜,根据经验:一般顾客的眼睛到地面的距离为)在区间内,设支架高为,顾客可视的镜像范围为(如图所示),记的长度为).

(I)当时,试求关于的函数关系式和的最大值;

(II)当顾客的鞋在镜中的像满足不等关系(不计鞋长)时,称顾客可在镜中看到自己的鞋,若使一般顾客都能在镜中看到自己的鞋,试求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了解高校学生平均每天使用手机的时间长短是否与性别有关,某调查小组随机抽取了25 名男生、10名女生进行为期一周的跟踪调查,调查结果如表所示:

平均每天使用手机小时

平均每天使用手机小时

合计

男生

15

10

25

女生

3

7

10

合计

18

17

35

(I) 根据列联表判断,是否有90%的把握认为学生使用手机的时间长短与性别有关;

(II)在参与调查的平均每天使用手机不超过3小时的10名男生中,有6人使用国产手机,从这10名男生中任意选取3人,求这3人中使用国产手机的人数的分布列和数学期望.

0.400

0.250

0.150

0.100

0.050

0.025

0.708

1.323

2.072

2.706

3.841

5.024

参考公式:

查看答案和解析>>

科目: 来源: 题型:

【题目】现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有(  )

A. 144种 B. 72种 C. 64种 D. 84种

查看答案和解析>>

科目: 来源: 题型:

【题目】某种产品的广告费用支出x(万元)与销售额y(万元)之间有如下的对应数据:

(1)画出散点图;

(2)求回归直线方程;

(3)据此估计广告费用为9万元时,销售收入y的值.

注:①参考公式:线性回归方程系数公式

②参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图1)和女生身高情况的频率分布直方图(图2).已知图1中身高在170~175cm的男生人数有16人

.

(1)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分比)的把握认为“身高与性别有关”?

总计

男生身高

女生身高

总计

(2)在上述80名学生中,从身高在170-175cm之间的学生按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.

0.025

0.610

0.005

0.001

5.024

4.635

7.879

10.828

参考公式及参考数据如下:

查看答案和解析>>

科目: 来源: 题型:

【题目】某工厂现有职工320人,平均每人每年可创利20万元.该工厂打算购进一批智能机器人(每购进一台机器人,将有一名职工下岗).据测算,如果购进智能机器人不超过100台,每购进一台机器人,所有留岗职工(机器人视为机器,不作为职工看待)在机器人的帮助下,每人每年多创利2千元,每台机器人购置费及日常维护费用折合后平均每年2万元,工厂为体现对职工的关心,给予下岗职工每人每年4万元补贴;如果购进智能机器人数量超过100台,则工厂的年利润万元(x为机器人台数且x<320).

1)写出工厂的年利润y与购进智能机器人台数x的函数关系.

2)为获得最大经济效益,工厂应购进多少台智能机器人?此时工厂的最大年利润是多少?(参考数据:

查看答案和解析>>

同步练习册答案