科目: 来源: 题型:
【题目】对于函数,下列个结论正确的是__________(把你认为正确的答案全部写上).
(1)任取,都有;
(2)函数在上单调递增;
(3),对一切恒成立;
(4)函数有个零点;
(5)若关于的方程有且只有两个不同的实根,,则.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知下列命题:
①在某项测量中,测量结果服从正态分布,若在内取值范围概率为,则在内取值的概率为;
②若,为实数,则“”是“”的充分而不必要条件;
③已知命题,,则是:
,;
④中,“角,,成等差数列”是“”的充分不必要条件;其中,所有真命题的个数是( )
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,菱形ABCD与正三角形BCE的边长均为2,且平面ABCD⊥平面BCE,平面ABCD,.
(I)求证:平面ABCD;
(II)求证:平面ACF⊥平面BDF.
查看答案和解析>>
科目: 来源: 题型:
【题目】下面几种推理是合情推理的是( )
①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是 归纳出所有三角形的内角和都是;③由,满足,,推出是奇函数;④三角形内角和是,四边形内角和是,五边形内角和是,由此得凸多边形内角和是.
A. ①②B. ①③④C. ①②④D. ②④
查看答案和解析>>
科目: 来源: 题型:
【题目】“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额 (百元)的频率分布直方图如图所示:
(1)求网民消费金额的平均值和中位数;
(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关;
男 | 女 | 合计 | |
30 | |||
合计 | 45 |
附表:
.
查看答案和解析>>
科目: 来源: 题型:
【题目】从年月份,某市街头出现共享单车,到月份,根据统计,市区所有人骑行过共享单车的人数已占,骑行过共享单车的人数中,有是大学生(含大中专及高职),该市区人口按万计算,大学生人数约万人.
(1)任选出一名大学生,求他(她)骑行过共享单车的概率;
(2)随单车投放数量增加,乱停乱放成为城市管理的问题,以下是累计投放单车数量与乱停乱放单车数量之间的关系图表:
累计投放单车数量 | |||||
乱停乱放单车数量 |
①计算关于的线性回归方程(其中精确到值保留三位有效数字),并预测当时,单车乱停乱放的数量;
②已知该市共有五个区,其中有两个区的单车乱停乱放数量超过标准.在“双创”活动中,检查组随机抽取三个区调查单车乱停乱放数量, 表示“单车乱停乱放数量超过标准的区的个数”,求的分布列和数学期望.
参考公式和数据:回归直线方程中的斜率和截距的最小二乘法估计公式分别为 .
查看答案和解析>>
科目: 来源: 题型:
【题目】甲、乙两人投篮命中的概率分别为与,各自相互独立.现两人做投篮游戏,共比赛3局,每局每人各投一球.
(1)求比赛结束后甲的进球数比乙的进球数多1的概率;
(2)设表示比赛结束后甲、乙两人进球数的差的绝对值,求的概率分布和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知正方体ABCD-A1B1C1D1的棱长为a,点E,F,G分别为棱AB,AA1,C1D1的中点.下列结论中,正确结论的序号是______.
①过E,F,G三点作正方体的截面,所得截面为正六边形;
②B1D1∥平面EFG;
③BD1⊥平面ACB1;
④异面直线EF与BD1所成角的正切值为;
⑤四面体ACB1D1的体积等于a3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com