相关习题
 0  262055  262063  262069  262073  262079  262081  262085  262091  262093  262099  262105  262109  262111  262115  262121  262123  262129  262133  262135  262139  262141  262145  262147  262149  262150  262151  262153  262154  262155  262157  262159  262163  262165  262169  262171  262175  262181  262183  262189  262193  262195  262199  262205  262211  262213  262219  262223  262225  262231  262235  262241  262249  266669 

科目: 来源: 题型:

【题目】城镇化是国家现代化的重要指标,据有关资料显示,19782013年,我国城镇常住人口从1.7亿增加到7.3亿.假设每一年城镇常住人口的增加量都相等,记1978年后第t(限定)年的城镇常住人口为亿.写出的解析式,并由此估算出我国2017年的城镇常住人口数.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了鼓励大家节约用水,自2013年以后,上海市实行了阶梯水价制度,其中每户的综合用水单价与户年用水量的关系如下表所示.

分档

户年用水量

综合用水单价/(元·

第一阶梯

0220(含)

3.45

第二阶梯

220300(含)

4.83

第三阶梯

300以上

5.83

记户年用水量为时应缴纳的水费为元.

1)写出的解析式;

2)假设居住在上海的张明一家2015年共用水,则张明一家2015年应缴纳水费多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知某条地铁线路通车后,地铁的发车时间间隔为t(单位:分钟),并且.经市场调研测算,地铁载客量与发车时间间隔t相关,当时,地铁为满载状态,载客量为450人;当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时的载客量为258人,记地铁载客量为(单位:人).

1)求的解析式,并求当发车时间间隔为5分钟时,地铁的载客量.

2)若该线路每分钟的利润为(单位:元),问当发车时间间隔为多少时,该线路每分钟的利润最大?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,垂直于底面.

1)求证; 

2)求平面与平面所成二面角的大小;

3)设棱的中点为,求异面直线所成角的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校参加夏令营的同学有3名男同学3名女同学,其所属年级情况如下表:

高一年级

高二年级

高三三年级

男同学

女同学

现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)

1)用表中字母写出这个试验的样本空间;

2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,写出事件的样本点,并求事件发生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知曲线,则下面结论正确的是( )

A. 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

B. 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

C. 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

D. 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线

查看答案和解析>>

科目: 来源: 题型:

【题目】某市2011年至2017年新开楼盘的平均销售价格(单位:千元/平方米)的统计数据如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代号

1

2

3

4

5

6

7

销售价格

3

3.4

3.7

4.5

4.9

5.3

6

附:参考公式:,其中为样本平均值。

参考数据:

(1)关于的线性回归方程;

(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,椭圆 的离心率为,点在椭圆上.

(1)求椭圆的方程;

(2)已知为平面内的两个定点,过点的直线与椭圆交于 两点,求四边形面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的焦点为,圆轴的一个交点为,圆的圆心为为等边三角形.

1)求抛物线的方程

2)设圆与抛物线交于两点,点为抛物线上介于两点之间的一点,设抛物线在点处的切线与圆交于两点,在圆上是否存在点,使得直线均为抛物线的切线,若存在求点坐标(用表示);若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,平面分别是线段的中点,

(1)证明:平面

(2)求F到平面的距离.

查看答案和解析>>

同步练习册答案