科目: 来源: 题型:
【题目】两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.哪种购物方式比较经济?你能把所得结论作一些推广吗?
查看答案和解析>>
科目: 来源: 题型:
【题目】在中国决胜全面建成小康社会的关键之年,如何更好地保障和改善民生,如何切实增强政策“获得感”,成为年全国两会的重要关切.某地区为改善民生调研了甲、乙、丙、丁、戊个民生项目,得到如下信息:①若该地区引进甲项目,就必须引进与之配套的乙项目;②丁、戊两个项目与民生密切相关,这两个项目至少要引进一个;③乙、丙两个项目之间有冲突,两个项目只能引进一个;④丙、丁两个项目关联度较高,要么同时引进,要么都不引进;⑤若引进项目戊,甲、丁两个项目也必须引进.则该地区应引进的项目为( )
A. 甲、乙B. 丙、丁C. 乙、丁D. 甲、丙
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求的普通方程和直线的倾斜角;
(2)设点和交于两点,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆心为的圆过原点,且直线与圆相切于点.
(1)求圆的方程;
(2)已知过点的直线的斜率为,且直线与圆相交于两点.
①若,求弦的长;
②若圆上存在点,使得成立,求直线的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分12分)已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.
(1)若,求外接圆的方程;
(2)若过点的直线与椭圆 相交于两点、,设为上一点,且满足(为坐标原点),当时,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,底面为菱形, 平面, , , , 分别是, 的中点.
(1)证明: ;
(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】试题分析:(1)证明线线垂直则需证明线面垂直,根据题意易得,然后根据等边三角形的性质可得,又,因此得平面,从而得证(2)先找到EH什么时候最短,显然当线段长的最小时, ,在中, , , ,∴,由中, , ,∴.然后建立空间直角坐标系,写出两个面法向量再根据向量的夹角公式即可得余弦值
解析:(1)证明:∵四边形为菱形, ,
∴为正三角形.又为的中点,∴.
又,因此.
∵平面, 平面,∴.
而平面, 平面且,
∴平面.又平面,∴.
(2)如图, 为上任意一点,连接, .
当线段长的最小时, ,由(1)知,
∴平面, 平面,故.
在中, , , ,
∴,
由中, , ,∴.
由(1)知, , 两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又, 分别是, 的中点,
可得, , , ,
, , ,
所以, .
设平面的一法向量为,
则因此,
取,则,
因为, , ,所以平面,
故为平面的一法向量.又,
所以 .
易得二面角为锐角,故所求二面角的余弦值为.
【题型】解答题
【结束】
20
【题目】【2018湖北七市(州)教研协作体3月高三联考】已知椭圆: 的左顶点为,上顶点为,直线与直线垂直,垂足为点,且点是线段的中点.
(I)求椭圆的方程;
(II)如图,若直线: 与椭圆交于, 两点,点在椭圆上,且四边形为平行四边形,求证:四边形的面积为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:
售出水量(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(单位:元) | 165 | 142 | 148 | 125 | 150 |
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若与成线性相关,则某天售出9箱水时,预计收入为多少元?
(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;
附:回归方程,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com