相关习题
 0  262065  262073  262079  262083  262089  262091  262095  262101  262103  262109  262115  262119  262121  262125  262131  262133  262139  262143  262145  262149  262151  262155  262157  262159  262160  262161  262163  262164  262165  262167  262169  262173  262175  262179  262181  262185  262191  262193  262199  262203  262205  262209  262215  262221  262223  262229  262233  262235  262241  262245  262251  262259  266669 

科目: 来源: 题型:

【题目】两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.哪种购物方式比较经济?你能把所得结论作一些推广吗?

查看答案和解析>>

科目: 来源: 题型:

【题目】在中国决胜全面建成小康社会的关键之年,如何更好地保障和改善民生,如何切实增强政策“获得感”,成为年全国两会的重要关切.某地区为改善民生调研了甲、乙、丙、丁、戊个民生项目,得到如下信息:①若该地区引进甲项目,就必须引进与之配套的乙项目;②丁、戊两个项目与民生密切相关,这两个项目至少要引进一个;③乙、丙两个项目之间有冲突,两个项目只能引进一个;④丙、丁两个项目关联度较高,要么同时引进,要么都不引进;⑤若引进项目戊,甲、丁两个项目也必须引进.则该地区应引进的项目为( )

A. 甲、乙B. 丙、丁C. 乙、丁D. 甲、丙

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系曲线的参数方程为 (为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)的普通方程和直线的倾斜角;

(2)设点交于两点,求.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 ,函数的图象在点处的切线平行于轴.

(1)求的值;

(2)求函数的极小值;

(3)设斜率为的直线与函数的图象交于两点 ,证明: .

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数 (是常数),

(1)求函数的单调区间;

(2)当时,函数有零点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆心为的圆过原点,且直线与圆相切于点.

(1)求圆的方程;

(2)已知过点的直线的斜率为,且直线与圆相交于两点.

①若,求弦的长;

②若圆上存在点,使得成立,求直线的斜率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数为定义域R上的奇函数,且在R上是单调递增函数,函数,数列为等差数列,且公差不为0,若,则( )

A. 45B. 15C. 10D. 0

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12)已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点

1)若,外接圆的方程;

2)若过点的直线与椭圆 相交于两点,设上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为菱形, 平面 分别是 的中点.

(1)证明:

(2)设为线段上的动点,若线段长的最小值为,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:(1)证明线线垂直则需证明线面垂直,根据题意易得然后根据等边三角形的性质可得,因此平面,从而得证(2)先找到EH什么时候最短,显然当线段长的最小时, ,在中, ,∴,由中, ,∴.然后建立空间直角坐标系,写出两个面法向量再根据向量的夹角公式即可得余弦值

解析:(1)证明:∵四边形为菱形,

为正三角形.又的中点,∴.

,因此.

平面 平面,∴.

平面 平面

平面.又平面,∴.

(2)如图, 上任意一点,连接 .

当线段长的最小时, ,由(1)知

平面 平面,故.

中,

中, ,∴.

由(1)知 两两垂直,以为坐标原点,建立如图所示的空间直角坐标系,又 分别是 的中点,

可得

所以 .

设平面的一法向量为

因此

,则

因为 ,所以平面

为平面的一法向量.又

所以 .

易得二面角为锐角,故所求二面角的余弦值为.

型】解答
束】
20

【题目】2018湖北七市(州)教研协作体3月高三联考已知椭圆 的左顶点为,上顶点为,直线与直线垂直,垂足为点,且点是线段的中点.

I)求椭圆的方程;

II)如图,若直线 与椭圆交于 两点,点在椭圆上,且四边形为平行四边形,求证:四边形的面积为定值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:

售出水量(单位:箱)

7

6

6

5

6

收入(单位:元)

165

142

148

125

150

学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.

(1)若成线性相关,则某天售出9箱水时,预计收入为多少元?

(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;

附:回归方程,其中

查看答案和解析>>

同步练习册答案