科目: 来源: 题型:
【题目】设函数为定义在上的奇函数,且当时,.
(1)求函数的解析式;
(2)求实数,使得函数在区间上的值域为;
(3)若函数在区间上的值域为,则记所有满足条件的区间的并集为,设,问是否存在实数,使得集合恰含有个元素?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,则下列说法正确的是________(填序号).
①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MN⊥AE;③不论D折至何位置(不在平面ABC内),都有MN∥AB;④在折起过程中,一定存在某个位置,使EC⊥AD.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥中,平面,四边形是菱形,,,是上任意一点。
(1)求证:;
(2)当面积的最小值是9时,在线段上是否存在点,使与平面所成角的正切值为2?若存在?求出的值,若不存在,请说明理由
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为.
(1)写出直线的普通方程和圆的直角坐标方程;
(2)设点,直线与圆相交于两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(本小题满分10分)选修4—4,坐标系与参数方程
已知曲线,直线:(为参数).
(I)写出曲线的参数方程,直线的普通方程;
(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年高考前夕某地天空出现了一朵点赞云,为了将这朵祥云送给马上升高三的各位学子,现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为,在直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).
(1)求曲线的直角坐标方程:
(2)点为曲线上任意一点,点为曲线上任意一点,求的最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com