科目: 来源: 题型:
【题目】已知函数f(x)的定义域为R,当x>0时满足:①f(x)﹣2f(﹣x)=0;②对任意x1>0,x2>0,x1≠x2有(x1﹣x2)(f(x1)﹣f(x2))>0恒成立:③f(4)=2f(2)=2,则不等式x[f(x)﹣1]>0的解集为_____(用区间表示)
查看答案和解析>>
科目: 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为 (参考数据:,,)
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是
A. 至少有一个白球;都是白球 B. 至少有一个白球;至少有一个红球
C. 至少有一个白球;红、黑球各一个 D. 恰有一个白球;一个白球一个黑球
查看答案和解析>>
科目: 来源: 题型:
【题目】已知斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=900,BC=2,AC=,且AA1⊥A1C,AA1=A1C.
(Ⅰ)求侧棱A1A与底面ABC所成角的大小;
(Ⅱ)求侧面A1ABB1与底面ABC所成二面角的大小。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数(,), ().
(1)如果是关于的不等式的解,求实数的取值范围;
(2)判断在和的单调性,并说明理由;
(3)证明:函数存在零点q,使得成立的充要条件是.
查看答案和解析>>
科目: 来源: 题型:
【题目】美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的,两种芯片都已经获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图像如图所示.
(1)试分别求出生产,两种芯片的毛收入(千万元)与投入资金(千万元)的函数关系式;
(2)现在公司准备投入亿元资金同时生产,两种芯片,求可以获得的最大利润是多少.
查看答案和解析>>
科目: 来源: 题型:
【题目】“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦尺,弓形高寸,则阴影部分面积约为(注:,,1尺=10寸)( )
A. 6.33平方寸B. 6.35平方寸
C. 6.37平方寸D. 6.39平方寸
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在中,,,与相交于点M.设,.
(1)试用向量表示.
(2)在线段上取点E,在线段取点F,使过点M.设,,其中当与重合时,,,此时;当与重合时,,,此时.能否由此得出般结论:不论在线段上如何变动,等式恒成立,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com