科目: 来源: 题型:
【题目】已知函数f(x)=|2x﹣3|+x+1.
(1)求函数f(x)的最小值;
(2)当x≥1时,关于x的不等式f(2x)<4x+2a恒成立,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线,的极坐标方程分别为,.
(1)将直线的参数方程化为极坐标方程,将的极坐标方程化为参数方程;
(2)当时,直线与交于,两点,与交于,两点,求.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了解学生对“两个一百年”奋斗目标、实现中华民族伟大复兴中国梦的“关注度”(单位:天),某中学团委组织学生在十字路口采用随机抽样的方法抽取了80名青年学生(其中男女人数各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组青年学生的月“关注度”分为6组: , , , , , ,得到如图所示的频率分布直方图.
(1)求的值;
(2)现从“关注度”在的男生与女生中选取3人,设这3人来自男生的人数为,求的分布列与期望;
(3)在抽取的80名青年学生中,从月“关注度”不少于25天的人中随机抽取2人,求至少抽取到1名女生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】玉山一中篮球体育测试要求学生完成“立定投篮”和“三步上篮”两项测试,“立定投篮”和“三步上篮”各有2次投篮机会,先进行“立定投篮”测试,如果合格才能参加“三步上篮”测试.为了节约时间,每项测试只需且必须投中一次即为合格.小华同学“立定投篮”和“三步上篮”的命中率均为.假设小华不放弃任何一次投篮机会且每次投篮是否命中相互独立.
(1)求小华同学两项测试均合格的概率;
(2)设测试过程中小华投篮次数为X,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A、B,交其准线l于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为( )
A.y2=9xB.y2=6x
C.y2=3xD.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知五面体ABCDEF中,四边形CDEF为矩形,,CD=2DE=2AD=2AB=4,AC=,.
(1)求证:AB平面ADE;
(2)求平面EBC与平面BCF所成的锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)已知函数f(x)(2x),若f(),θ∈(0,),求tanθ.
(2)若函数g(x)=﹣(sincos)cos,讨论函数g(x)在区间[,上的单调性.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,建立极坐标系.已知曲线: (为参数), :(为参数).
(1)化,的方程为普通方程,并说明它们分别表示什么曲线;
(2)直线的极坐标方程为,若上的点对应的参数为,为上的动点,求线段的中点到直线距离的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.
(1)求样本容量和抽取的高中生近视人数分别是多少?
(2)在抽取的名高中生中,平均每天学习时间超过9小时的人数为,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:
平均学习时间不超过9小时 | 平均学习时间超过9小时 | 总计 | |
不近视 | |||
近视 | |||
总计 |
(3)根据(2)中的列联表,判断是否有的把握认为高中生平均每天学习时间与近视有关?
附:,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com