相关习题
 0  262150  262158  262164  262168  262174  262176  262180  262186  262188  262194  262200  262204  262206  262210  262216  262218  262224  262228  262230  262234  262236  262240  262242  262244  262245  262246  262248  262249  262250  262252  262254  262258  262260  262264  262266  262270  262276  262278  262284  262288  262290  262294  262300  262306  262308  262314  262318  262320  262326  262330  262336  262344  266669 

科目: 来源: 题型:

【题目】已知函数fx是定义在(﹣11)上的奇函数,且f

)求实数mn的值,并用定义证明fx)在(﹣11)上是增函数;

)设函数gx)是定义在(﹣11)上的偶函数,当x[01)时,gx)=fx),求函数gx)的解析式.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知 为椭圆 的左焦点,且椭圆.

(Ⅰ)求椭圆的方程;

(Ⅱ) 是否存在平行四边形 ,同时满足下列两个条件:

①点在直线上;②点 在椭圆上且直线 的斜率等于1.如果存在,求出点坐标;如果不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数.

(1)讨论的单调性和极值;

(2)证明:当时,若存在零点,则在区间上仅有一个零点.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若函数在区间上无零点,求实数的最小值;

(2)若对任意给定的,在上方程总存在不等的实根,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知mR,命题p:对任意x[01],不等式x22x1≥m23m恒成立,命题q:存在x[11],使得m≤2x1

)若命题p为真命题,求m的取值范围;

)若命題q为假命题,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某同学解答一道解析几何题:已知直线lx轴的交点为A,圆O经过点A

(Ⅰ)求r的值;

(Ⅱ)若点B为圆O上一点,且直线AB垂直于直线l,求

该同学解答过程如下:

解答:(Ⅰ)令,即,解得,所以点A的坐标为

因为圆O经过点A,所以

(Ⅱ)因为.所以直线AB的斜率为

所以直线AB的方程为,即

代入消去y整理得

解得.当时,.所以点B的坐标为

所以

指出上述解答过程中的错误之处,并写出正确的解答过程.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.

该公司将最近承揽的100件包裹的重量统计如下:

包裹重量(单位:

1

2

3

4

5

包裹件数

43

30

15

8

4

公司对近60天,每天揽件数量统计如下表:

包裹件数范围

0~100

101~200

201~300

301~400

401~500

包裹件数(近似处理)

50

150

250

350

450

天数

6

6

30

12

6

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;

(2)①估计该公司对每件包裹收取的快递费的平均值;

②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,平面ABC,点DEF分别为PCABAC的中点.

(Ⅰ)求证:平面DEF

(Ⅱ)求证:

阅读下面给出的解答过程及思路分析.

解答:(Ⅰ)证明:在中,因为EF分别为ABAC的中点,所以

因为平面DEF平面DEF,所以平面DEF

(Ⅱ)证明:因为平面ABC平面ABC,所以

因为DF分别为PCAC的中点,所以.所以

思路第(Ⅰ)问是先证,再证线面平行

第(Ⅱ)问是先证,再证,最后证线线垂直

以上证明过程及思路分析中,设置了①~⑤五个空格,如下的表格中为每个空格给出了三个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置.

空格

选项

A

B

C

A

B

C

A.线线垂直

B.线面垂直

C.线线平行

A.线线垂直

B.线面垂直

C.线线平行

A.线面平行

B.线线平行

C.线面垂直

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知四棱锥,底面为矩形, 且侧面平面,侧面平面为正三角形,

(1)求证:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知梯形如图(1)所示,其中 ,四边形是边长为的正方形,现沿进行折叠,使得平面平面,得到如图(2)所示的几何体.

(Ⅰ)求证:平面平面

(Ⅱ)已知点在线段上,且平面,求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案