科目: 来源: 题型:
【题目】已知函数f(x)是定义在(﹣1,1)上的奇函数,且f().
(Ⅰ)求实数m,n的值,并用定义证明f(x)在(﹣1,1)上是增函数;
(Ⅱ)设函数g(x)是定义在(﹣1,1)上的偶函数,当x∈[0,1)时,g(x)=f(x),求函数g(x)的解析式.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知 为椭圆 的左焦点,且椭圆过.
(Ⅰ)求椭圆的方程;
(Ⅱ) 是否存在平行四边形 ,同时满足下列两个条件:
①点在直线上;②点 在椭圆上且直线 的斜率等于1.如果存在,求出点坐标;如果不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知m∈R,命题p:对任意x∈[0,1],不等式x2﹣2x﹣1≥m2﹣3m恒成立,命题q:存在x∈[﹣1,1],使得m≤2x﹣1;
(Ⅰ)若命题p为真命题,求m的取值范围;
(Ⅱ)若命題q为假命题,求m的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某同学解答一道解析几何题:“已知直线l:与x轴的交点为A,圆O:经过点A.
(Ⅰ)求r的值;
(Ⅱ)若点B为圆O上一点,且直线AB垂直于直线l,求.”
该同学解答过程如下:
解答:(Ⅰ)令,即,解得,所以点A的坐标为.
因为圆O:经过点A,所以.
(Ⅱ)因为.所以直线AB的斜率为.
所以直线AB的方程为,即.
代入消去y整理得,
解得,.当时,.所以点B的坐标为.
所以.
指出上述解答过程中的错误之处,并写出正确的解答过程.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
包裹重量(单位:) | 1 | 2 | 3 | 4 | 5 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司对近60天,每天揽件数量统计如下表:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 12 | 6 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在三棱锥中,平面ABC,点D,E,F分别为PC,AB,AC的中点.
(Ⅰ)求证:平面DEF;
(Ⅱ)求证:.
阅读下面给出的解答过程及思路分析.
解答:(Ⅰ)证明:在中,因为E,F分别为AB,AC的中点,所以①.
因为平面DEF,平面DEF,所以平面DEF.
(Ⅱ)证明:因为平面ABC,平面ABC,所以②.
因为D,F分别为PC,AC的中点,所以.所以.
思路第(Ⅰ)问是先证③,再证“线面平行”;
第(Ⅱ)问是先证④,再证⑤,最后证“线线垂直”.
以上证明过程及思路分析中,设置了①~⑤五个空格,如下的表格中为每个空格给出了三个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置.
空格 | 选项 | ||
① | A. | B. | C. |
② | A. | B. | C. |
③ | A.线线垂直 | B.线面垂直 | C.线线平行 |
④ | A.线线垂直 | B.线面垂直 | C.线线平行 |
⑤ | A.线面平行 | B.线线平行 | C.线面垂直 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知梯形如图(1)所示,其中, ,四边形是边长为的正方形,现沿进行折叠,使得平面平面,得到如图(2)所示的几何体.
(Ⅰ)求证:平面平面;
(Ⅱ)已知点在线段上,且平面,求与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com