相关习题
 0  262176  262184  262190  262194  262200  262202  262206  262212  262214  262220  262226  262230  262232  262236  262242  262244  262250  262254  262256  262260  262262  262266  262268  262270  262271  262272  262274  262275  262276  262278  262280  262284  262286  262290  262292  262296  262302  262304  262310  262314  262316  262320  262326  262332  262334  262340  262344  262346  262352  262356  262362  262370  266669 

科目: 来源: 题型:

【题目】某校举行演讲比赛,10位评委对两位选手的评分如下:

7.5 7.5 7.8 7.8 8.0 8.0 8.2 8.3 8.4 9.9

7.5 7.8 7.8 7.8 8.0 8.0 8.3 8.3 8.5 8.5

选手的最终得分为去掉一个最低分和一个最高分之后,剩下8个评分的平均数.那么,这两个选手的最后得分是多少?若直接用10位评委评分的平均数作为选手的得分,两位选手的排名有变化吗?你认为哪种评分办法更好?为什么?

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校要定制高一年级的校服,学生根据厂家提供的参考身高选择校服规格.据统计,高一年级女生需要不同规格校服的频数如表所示.

校服规格

155

160

165

170

175

合计

频数

39

64

167

90

26

386

如果用一个量来代表该校高一年级女生所需校服的规格,那么在中位数、平均数和众数中,哪个量比较合适?试讨论用表中的数据估计全国高一年级女生校服规格的合理性.

查看答案和解析>>

科目: 来源: 题型:

【题目】利用节中100户居民用户的月均用水量的调查数据,计算样本数据的平均数和中位数,并据此估计全市居民用户月均用水量的平均数和中位数.

9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.0

2.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2. 0 10.5

2.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.9

2.3 10.0 16.7 12.0 12.4 7.8 5.2 13.6 2.6 22.4

3.6 7.1 8.8 25.6 3.2 18.3 5.1 2.0 3.0 12.0

22.2 10.8 5.5 2.0 24.3 9.9 3.6 5.6 4.4 7.9

5.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.7

5.5 6.0 16.0 2.4 9.5 3.7 17.0 3.8 4.1 2.3

5.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.8

7.1 28.0 10.2 13.8 17.9 10.1 5.5 4.6 3.2 21.6

查看答案和解析>>

科目: 来源: 题型:

【题目】求下列函数的解析式:

(1)已知f(x)是二次函数,且f(0)=2,f(x+1)-f(x)=x-1,求f(x);

(2)已知3f(x)+2f(-x)=x+3,求f(x).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,且,其中分别是的中点,动点在线段上运动时,下列四个结论:①

其中恒成立的为(

A. ①③ B. ③④ C. ①④ D. ②③

查看答案和解析>>

科目: 来源: 题型:

【题目】随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(单位:亿元)的数据如下:

(1)求关于的线性回归方程;

(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.

附:回归直线的斜率和截距的最小二乘估计公式分别为: .

查看答案和解析>>

科目: 来源: 题型:

【题目】某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.

求:(1)高一参赛学生的成绩的众数、中位数;

(2)高一参赛学生的平均成绩.

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司对员工实行新的临时事假制度:“每位员工每月在正常的工作时间临时有事,可请假至多三次,每次至多一小时”,现对该制度实施以来名员工请假的次数进行调查统计,结果如下表所示:

请假次数

人数

根据上表信息解答以下问题:

(1)从该公司任选两名员工,求这两人请假次数之和恰为的概率;

(2)从该公司任选两名员工,用表示这两人请假次数之差的绝对值,求随机变量的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某研究所计划利用宇宙飞船进行新产品搭载试验,计划搭载若干件新产品A,B,该研究所要根据产品的研制成本、产品重量、搭载试验费用和预计收益来决定具体安排,通过调查得到的有关数据如表:

每件A产品

每件B产品

研制成本、搭载试验

费用之和(万元)

20

30

产品重量(千克)

10

5

预计收益(万元)

80

60

已知研制成本、搭载试验费用之和的最大资金为300万元,最大搭载重量为110千克,则如何安排这两种产品进行搭载,才能使总预计收益达到最大,求最大预计收益是多少.

查看答案和解析>>

科目: 来源: 题型:

【题目】某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):

甲群:13131415151515161717.

乙群:543445666656.

1)甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映甲群市民的年龄特征?

2)乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好地反映乙群市民的年龄特征?

查看答案和解析>>

同步练习册答案