科目: 来源: 题型:
【题目】有甲、乙两家公司都需要招聘求职者,这两家公司的聘用信息如下:
甲公司 | 乙公司 | ||||||||
职位 | A | B | C | D | 职位 | A | B | C | D |
月薪/千元 | 5 | 6 | 7 | 8 | 月薪/千元 | 4 | 6 | 8 | 10 |
获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 获得相应职位概率 | 0.4 | 0.3 | 0.2 | 0.1 |
(1)若两人分别去应聘甲、乙两家公司的C职位,记这两人被甲、乙两家公司的C职位录用的人数和为,求的分布列;
(2)根据甲、乙两家公司的聘用信息,如果你是该求职者,你会选择哪一家公司?说明理由。
(3)若小王和小李分别被甲、乙两家公司录用,求小王月薪高于小李的概率。
查看答案和解析>>
科目: 来源: 题型:
【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:
超市 | A | B | C | D | E | F | G |
广告费支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
销售额 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用线性回归模型拟合与的关系,求关于的线性回归方程;
(2)用二次函数回归模型拟合与的关系,可得回归方程:,经计算二次函数回归模型和线性回归模型的相关指数分别约为和,请用说明选择哪个回归模型更合适,并用此模型预测超市应支出多少万元广告费,能获得最大的销售额?最大的销售额是多少?(精确到个位数)
参数数据及公式:,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:
温度x/C | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得: , , , ,
,线性回归模型的残差平方和,e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.
(Ⅰ)若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);
(Ⅱ)若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.
( i )试与(Ⅰ)中的回归模型相比,用R2说明哪种模型的拟合效果更好.
( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).
附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为
=;相关指数R2=.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,其中.
(1)当时,求函数在处的切线方程;
(2)记函数的导函数是,若不等式对任意的实数恒成立,求实数a的取值范围;
(3)设函数,是函数的导函数,若函数存在两个极值点,,且,求实数a的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为:(为参数,),以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程.
(1)①当时,写出直线的普通方程;
②写出曲线的直角坐标方程;
(2)若点,设曲线与直线交于点,求最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,已知直线的极坐标方程是,圆的参数方程为(为参数,).
(1)若直线与圆有公共点,求实数的取值范围;
(2)当时,过点且与直线平行的直线交圆于两点,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数.
(1)当时,求满足的的取值;
(2)若函数是定义在上的奇函数
①存在,不等式有解,求的取值范围;
②若函数满足,若对任意,不等式恒成立,求实数的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com