相关习题
 0  262201  262209  262215  262219  262225  262227  262231  262237  262239  262245  262251  262255  262257  262261  262267  262269  262275  262279  262281  262285  262287  262291  262293  262295  262296  262297  262299  262300  262301  262303  262305  262309  262311  262315  262317  262321  262327  262329  262335  262339  262341  262345  262351  262357  262359  262365  262369  262371  262377  262381  262387  262395  266669 

科目: 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在 (单位:克)中,其频率分布直方图如图所示.

(1)按分层抽样的方法从质量落在 的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:

A.所有蜜柚均以40元/千克收购;

B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知数列中,,且对任意的,都有,则( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为 轴,直线轴于点,为椭圆上的动点,的面积最大值为1.

(1)求椭圆的方程;

(2)如图,过点作两条直线与椭圆分别交于,且使轴,问四边形的两条对角线的交点是否为定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下列四个命题:

函数的最小值是2

等差数列的前n项和为,满足,则当时,取最大值;

等比数列的前n项和为,若,则

恒成立,则实数a的取值范围是

其中所有正确命题的序号是________________________

查看答案和解析>>

科目: 来源: 题型:

【题目】1)在已分组的若干数据中,每组的频数是指___________,每组的频率是指____________.

2)一个公司共有N名员工,下设一些部门,要采用等比例外层随机抽样的方法从全体员工中抽取样本量为n的样本,如果某部门有m名员工,那么从该部门抽取的员工人数是____________.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).以直角坐标系原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)写出曲线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)设点上,点上,且,求面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】地震、海啸、洪水、森林大火等自然灾害频繁出现,紧急避险常识越来越引起人们的重视.某校为了了解学生对紧急避险常识的了解情况,从高一年级和高二年级各选取100名同学进行紧急避险常识知识竞赛.图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按分组,得到的频率分布直方图.

(Ⅰ)根据成绩频率分布直方图分别估计参加这次知识竞赛的两个年级学生的平均成绩;

(Ⅱ)完成下面列联表,并回答是否有的把握认为“两个年级学生对紧急避险常识的了解有差异”?

成绩小于60分人数

成绩不小于60分人数

合计

高一年级

高二年级

合计

附:

临界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】四名同学各掷骰子5次,分别记录每次骰子出现的点数,根据四名同学的统计结果,可以判断出一定没有出现点数6的是(

A.平均数为3.中位数为2B.中位数为3.众数为2

C.平均数为2.方差为2.4D.中位数为3.方差为2.8

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为.

(I)求椭圆的方程

(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值

查看答案和解析>>

科目: 来源: 题型:

【题目】已知.

1)若有两个零点,求的范围;

2)若有两个极值点,求的范围;

3)在(2)的条件下,若的两个极值点为 ,求证: .

查看答案和解析>>

同步练习册答案