科目: 来源: 题型:
【题目】党的十九大报告指出,建设教育强国是中华民族伟大复兴的基础工程,必须把教育事业放在优先位置,深化教育资源的均衡发展.现有4名男生和2名女生主动申请毕业后到两所偏远山区小学任教.将这6名毕业生全部进行安排,每所学校至少安排2名毕业生,则每所学校男女毕业生至少安排一名的概率为
A. B. C. D.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知向量,向量,设函数的图象关于直线对称,其中常数.
(1)若,求的值域;
(2)将函数的图象向左平移个单位,再向下平移1个单位,得到函数的图象,用五点法作出函数在区间上的图象.
查看答案和解析>>
科目: 来源: 题型:
【题目】判断下列全称量词命题的真假:
(1)每一个末位是0的整数都是5的倍数;
(2)线段垂直平分线上的点到这条线段两个端点的距离相等;
(3)对任意负数的平方是正数;
(4)梯形的对角线相等
查看答案和解析>>
科目: 来源: 题型:
【题目】某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.试验数据分别列于表和表.统计方法中,同一组数据常用该组区间的中点值作为代表.
停车距离(米) | |||||
频数 |
表
平均每毫升血液酒精含量毫克 | |||||
平均停车距离米 |
表
(1)根据最小二乘法,由表的数据计算关于的回归方程;
(2)该测试团队认为:驾驶员酒后驾车的平均“停车距离”大于无酒状态下(表)的停车距离平均数的倍,则认定驾驶员是“醉驾”.请根据(1)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?
附:回归方程中,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量, 获得本场比赛胜利,最终人机大战总比分定格.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.
(Ⅰ)根据已知条件完成下面的列联表,并据此资料你是否有的把握认为“围棋迷”与性别有关?
非围棋迷 | 围棋迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
(Ⅱ)将上述调查所得到的频率视为概率,现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名淡定生中的“围棋迷”人数为。若每次抽取的结果是相互独立的,求的分布列,期望和方差.
附: ,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目: 来源: 题型:
【题目】设a,b,c分别是的三条边,且.我们知道,如果为直角三角形,那么(勾股定理).反过来,如果,那么为直角三角形(勾股定理的逆定理).由此可知,为直角三角形的充要条件是.请利用边长a,b,c分别给出为锐角三角形和钝角三角形的一个充要条件,并证明.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是一个“蝴蝶形图案(阴影区域)”,其中是过抛物线的两条互相垂直的弦(点在第二象限),且交于点,点为轴上一点,,其中为锐角
(1)设线段的长为,将表示为关于的函数
(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时的大小
查看答案和解析>>
科目: 来源: 题型:
【题目】一个不透明的盒子中关有蝴蝶、蜜蜂和蜻蜓三种昆虫共11只,现在盒子上开一小孔,每次只能飞出1只昆虫(假设任意1只昆虫等可能地飞出).若有2只昆虫先后任意飞出(不考虑顺序),则飞出的是蝴蝶或蜻蜓的概率是.
(1)求盒子中蜜蜂有几只;
(2)若从盒子中先后任意飞出3只昆虫(不考虑顺序),记飞出蜜蜂的只数为X,求随机变量X的分布列与数学期望E(X).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com