相关习题
 0  262234  262242  262248  262252  262258  262260  262264  262270  262272  262278  262284  262288  262290  262294  262300  262302  262308  262312  262314  262318  262320  262324  262326  262328  262329  262330  262332  262333  262334  262336  262338  262342  262344  262348  262350  262354  262360  262362  262368  262372  262374  262378  262384  262390  262392  262398  262402  262404  262410  262414  262420  262428  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,

(1)求证:平面平面

(2)的中点,求证:平面

(3)与平面所成的角为求四棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)求函数的极值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左、右焦点,点在椭圆上,当时, 内切圆的半径为.

(1)求椭圆的方程;

(2)已知直线与椭圆相较于两点,且当直线的斜率之和为2时,问:点到直线的距离是否存在最大值?若存在,求出最大值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,四边形为正方形,延长,使得,将四边形沿折起到的位置,使平面平面,如图2.

(1)求证:平面

(2)求异面直线所成角的大小;

(3)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着网络的飞速发展,人们的生活发生了很大变化,其中无现金支付是一个显著特征,某评估机构对无现金支付的人群进行网络问卷调查,并从参与调查的数万名受访者中随机选取了300人,把这300人分为三类,即使用支付宝用户、使用微信用户、使用银行卡用户,各类用户的人数如图所示,同时把这300人按年龄分为青年人组与中年人组,制成如图所示的列联表:

支付宝用户

非支付宝用户

合计

中老年

90

青年

120

合计

300

(1) 完成列联表,并判断是否有99%的把握认为使用支付宝用户与年龄有关系?

(2)把频率作为概率,从所有无现金支付用户中(人数很多)随机抽取3人,用表示所选3人中使用支付宝用户的人数,求的分布列与数学期望.

附:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】函数的部分图象如图,是图象的一个最低点,图象与轴的一个交点坐标为,与轴的交点坐标为.

1)求的值;

2)关于的方程上有两个不同的解,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列命题中:

①若函数的定义域为,则一定是偶函数;

②若是定义域上奇函数,,都有,则的图像关于直线对称;

③已知是函数的定义域内的任意两个值,且,若,则是定义域减函数;

④已知是定义在上奇函数,且也为奇函数,则是以4为周期的周期函数。

其中真命题的有_____________

查看答案和解析>>

科目: 来源: 题型:

【题目】是函数的一个极值点.

(1)求的关系式(用表示

(2)求的单调区间;

(3)设,若存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,梯形中,中点.沿翻折到的位置, 使如图2.

(1)求证:平面 平面

(2)求与平面所成角的正弦值;

(3)设分别为的中点,试比较三棱锥和三棱锥(图中未画出)的体积大小,并说明理由.

图1 图2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平行四边形中, °,四边形是矩形, ,平面平面.

1,求证:

2若二面角的正弦值为的值.

查看答案和解析>>

同步练习册答案