相关习题
 0  262259  262267  262273  262277  262283  262285  262289  262295  262297  262303  262309  262313  262315  262319  262325  262327  262333  262337  262339  262343  262345  262349  262351  262353  262354  262355  262357  262358  262359  262361  262363  262367  262369  262373  262375  262379  262385  262387  262393  262397  262399  262403  262409  262415  262417  262423  262427  262429  262435  262439  262445  262453  266669 

科目: 来源: 题型:

【题目】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①;根据2010年至2016年的数据(时间变量的值依次为)建立模型②

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的

A

B

C

D

E

F

这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 ( )

A. 360种 B. 432种 C. 456种 D. 480种

查看答案和解析>>

科目: 来源: 题型:

【题目】为了了解甲、乙两校学生自主招生通过情况,从甲校抽取60人,从乙校抽取50人进行分析。

(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;

(2)现已知甲校三人在某大学自主招生中通过的概率分别为,用随机变量X表示三人在该大学自主招生中通过的人数,求X的分布列及期望.

参考公式:.

参考数据:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示,在正方体ABCDA1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:BQD1三点共线.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四面体ABCD中作截面PQR,若PQCB的延长线交于点MRQDB的延长线交于点NRPDC的延长线交于点K.

1)求证:直线平面PQR

2)求证:点K在直线MN.

查看答案和解析>>

科目: 来源: 题型:

【题目】某旅行团按以下规定选择五个景区游玩:①若去,则去;②不能同时去;③都去,或者都不去;④去且只去一个;⑤若去,则要去.那么,这个旅游团最多能去的景区为_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数fx)的定义域为(﹣∞00+∞),fx)是奇函数,且当x0时,fx=x2﹣x+a,若函数gx=fx﹣x的零点恰有两个,则实数a的取值范围是( )

A.a0B.a≤0C.a≤1D.a≤0a=1

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目: 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出的值分别为( )

(参考数据:

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥中,底面 ABCD为矩形,侧面为正三角形,且平面平面 EPD 中点,AD=2.

(1)证明平面AEC丄平面PCD;

(2)若二面角的平面角满足,求四棱锥 的体积.

查看答案和解析>>

同步练习册答案