科目: 来源: 题型:
【题目】如图所示的多面体中, AC⊥BC,四边形ABED是正方形,平面ABED⊥平面ABC,点F,G,H分别为BD,EC,BE的中点,求证:
(1) BC⊥平面ACD
(2)平面HGF∥平面ABC.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知甲盒内有大小相同的个红球和个黑球,乙盒内有大小相同的个红球和个黑球.现从甲、乙两个盒内各任取个球.
(1)求取出的个球中恰有个红球的概率;
(2)设为取出的个球中红球的个数,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,在斜三棱柱中,底面是等腰三角形,,是的中点,侧面底面.
(1)求证:;
(2)过侧面的对角线的平面交侧棱于点,若,求证:截面侧面;
(3)若截面平面,成立吗?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】四棱锥中,底面是边长为2的菱形,.,且平面,,点分别是线段上的中点,在上.且.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面的成角的正弦值;
(Ⅲ)请画出平面与四棱锥的表面的交线,并写出作图的步骤.
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系中,直线的参数方程为,(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出直线的极坐标方程与曲线的直角坐标方程;
(2)已知与直线平行的直线过点,且与曲线交于两点,试求.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知点是椭圆上的任意一点,直线与椭圆交于,两点,直线,的斜率都存在.
(1)若直线过原点,求证:为定值;
(2)若直线不过原点,且,试探究是否为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列说法正确的是( )
A.若m∥α,n∥α,则 m∥n
B.若α⊥γ,β⊥γ,则α∥β
C.若m⊥α,n⊥β,且α⊥β,则m⊥n.
D.若m∥α,n∥α,且mβ, nβ,则α∥β
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com