相关习题
 0  262367  262375  262381  262385  262391  262393  262397  262403  262405  262411  262417  262421  262423  262427  262433  262435  262441  262445  262447  262451  262453  262457  262459  262461  262462  262463  262465  262466  262467  262469  262471  262475  262477  262481  262483  262487  262493  262495  262501  262505  262507  262511  262517  262523  262525  262531  262535  262537  262543  262547  262553  262561  266669 

科目: 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】是两条不同的直线,是两个不同的平面,有下列正确命题的序号是________

(1)若m,n,则mn, (2)若

(3)若,则; (4)若,则

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正项数列的首项,前n项和满足

(1)求数列的通项公式;

(2)若数列是公比为4的等比数列,且也是等比数列,若数列单调递增,求实数的取值范围;

(3)若数列都是等比数列,且满足,试证明: 数列中只存在三项.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数在其定义域内有两个不同的极值点.

(1)求的取值范围;

(2)试比较的大小,并说明理由;

(3)设的两个极值点为,证明.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;

(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时,的数学期望达到最大值?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知定义在R上的奇函数fx),且对任意实数x1x2x1x2时,都有(fx1)﹣fx2))x1x2)<0.若存在实数x[33],使得不等式fax+fa2x)>0成立,则实数a的取值范围是(   )

A.(﹣32B.[32]C.(﹣21D.[21]

查看答案和解析>>

科目: 来源: 题型:

【题目】已知.

(1)讨论的单调性;

(2)若,且在区间上的最小值为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】(本小题满分12分)

已知抛物线C的方程Cy2="2" p xp0)过点A1-2.

I)求抛物线C的方程,并求其准线方程;

II)是否存在平行于OAO为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求出直线l的方程;若不存在,说明理由。

【答案】I)抛物线C的方程为,其准线方程为II)符合题意的直线l 存在,其方程为2x+y-1 =0.

【解析】

试题()求抛物线标准方程,一般利用待定系数法,只需一个独立条件确定p的值:(-222p·1,所以p2.再由抛物线方程确定其准线方程:,()由题意设,先由直线OA的距离等于根据两条平行线距离公式得:解得,再根据直线与抛物线C有公共点确定

试题解析:解 (1)将(1,-2)代入y22px,得(-222p·1

所以p2

故所求的抛物线C的方程为

其准线方程为

2)假设存在符合题意的直线

其方程为

因为直线与抛物线C有公共点,

所以Δ48t≥0,解得

另一方面,由直线OA的距离

可得,解得

因为-1[,+),1∈[,+),

所以符合题意的直线存在,其方程为

考点:抛物线方程,直线与抛物线位置关系

【名师点睛】求抛物线的标准方程的方法及流程

1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.

2)流程:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.

提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mxx2=mym≠0).

型】解答
束】
22

【题目】已知椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上.

(1)求椭圆的方程;

(2)直线过椭圆左焦点交椭圆于为椭圆短轴的上顶点,当直线时,求的面积.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了适应高考改革,某中学推行“创新课堂”教学。高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)

(1)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?

(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.

参考公式

临界值表

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5,6的六个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则为中奖,按照这样的规则摸奖,中奖的概率为(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案