科目: 来源: 题型:
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了茎叶图:则下列结论中表述不正确的是
A. 第一种生产方式的工人中,有75%的工人完成生产任务所需要的时间至少80分钟
B. 第二种生产方式比第一种生产方式的效率更高
C. 这40名工人完成任务所需时间的中位数为80
D. 无论哪种生产方式的工人完成生产任务平均所需要的时间都是80分钟.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数相邻两对称轴间的距离为,若将的图象先向左平移个单位,再向下平移1个单位,所得的函数为奇函数.
(1)求的解析式,并求的对称中心;
(2)若关于的方程在区间上有两个不相等的实根,求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F.
(1)求证:AB∥EF;
(2)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某地区某农产品近几年的产量统计如表:
(1)根据表中数据,建立关于的线性回归方程;
(2)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.(参考数据: ,计算结果保留小数点后两位)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的左右焦点分别为F1,F2,离心率为,设过点F2的直线l被椭圆C截得的线段为MN,当l⊥x轴时,|MN|=3.
(1)求椭圆C的标准方程;
(2)在x轴上是否存在一点P,使得当l变化时,总有PM与PN所在的直线关于x轴对称?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】若直线和是异面直线,在平面内,在平面内,是平面与平面的交线,则下列命题正确的是( )
A. 与都不相交 B. 与都相交
C. 至多与中的一条相交 D. 至少与中的一条相交
查看答案和解析>>
科目: 来源: 题型:
【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线和距离之和的最小值为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com