相关习题
 0  262542  262550  262556  262560  262566  262568  262572  262578  262580  262586  262592  262596  262598  262602  262608  262610  262616  262620  262622  262626  262628  262632  262634  262636  262637  262638  262640  262641  262642  262644  262646  262650  262652  262656  262658  262662  262668  262670  262676  262680  262682  262686  262692  262698  262700  262706  262710  262712  262718  262722  262728  262736  266669 

科目: 来源: 题型:

【题目】在第二届乌镇互联网大会中, 为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有

A.B.

C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】设函数

(1)若f(1)<0,试判断函数单调性并求使不等式恒成立的的取值范围;

(2)若 上的最小值为-2,求m的值。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在海岸线l一侧P处有一个美丽的小岛,某旅游公司为方便登岛游客,在l上设立了MN两个报名接待点,PMN三点满足任意两点间的距离为公司拟按以下思路运作:先将MN两处游客分别乘车集中到MN之间的中转点QQ异于MN两点,然后乘同一艘游轮由Q处前往P据统计,每批游客报名接待点M处需发车2辆,N处需发车4辆,每辆汽车的运费为20,游轮的运费为120,每批游客从各自报名点到P岛所需的运输总成本为T元.

写出T关于的函数表达式,并指出的取值范围;

问:中转点Q距离M处多远时,T最小?

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为:.

(1)若曲线的参数方程为为参数),求曲线的直角坐标方程和曲线的普通方程;

(2)若曲线的参数方程为为参数),,且曲线与曲线的交点分别为,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)若函数处的切线与直线平行,求实数的值;

(2)试讨论函数在区间上的最大值;

(3)若时,函数恰有两个零点,求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,椭圆的左焦点为,过点的直线交椭圆于两点,的最大值为的最小值为,满足.

(1)若线段垂直于轴时,,求椭圆的方程;

(2)设线段的中点为的垂直平分线与轴和轴分别交于两点,是坐标原点,记的面积为的面积为,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知在四棱锥中,底面是边长为4的正方形,是正三角形,平面平面分别是的中点.

(1)求证:平面平面

(2)若是线段上一点,求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系中,已知直线为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设点的直角坐标为,直线与曲线的交点为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】《朗读者》是一档文化情感类节目,以个人成长、情感体验、背景故事与传世佳作相结合的方式,选用精美的文字,用最平实的情感读出文字背后的价值,深受人们的喜爱.为了了解人们对该节目的喜爱程度,某调查机构随机调查了两个城市各100名观众,得到下面的列联表.

非常喜爱

喜爱

合计

城市

60

100

城市

30

合计

200

完成上表,并根据以上数据,判断是否有的把握认为观众的喜爱程度与所处的城市有关?

附参考公式和数据:(其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】某港口有一个泊位,现统计了某100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如下表:

(1)设该月100艘轮船在该泊位的平均停靠时间为小时,求的值;

(2)假定某天只有甲、乙两艘轮船需要在该泊位停靠小时,且在一昼夜的时间段中随机到达,求这两艘轮船至少有一艘在停靠该泊位时必须等待的概率.

查看答案和解析>>

同步练习册答案