相关习题
 0  262547  262555  262561  262565  262571  262573  262577  262583  262585  262591  262597  262601  262603  262607  262613  262615  262621  262625  262627  262631  262633  262637  262639  262641  262642  262643  262645  262646  262647  262649  262651  262655  262657  262661  262663  262667  262673  262675  262681  262685  262687  262691  262697  262703  262705  262711  262715  262717  262723  262727  262733  262741  266669 

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面 平面,BC//平面PAD, ,.

求证:(1) 平面

(2)平面平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】1)已知,求的定义域并判断奇偶性.

2)已知奇函数定义域为R时,,求解析式.

3)已知函数,求单调增区间和减区间.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数是定义在实数集R上的奇函数,且在区间上是单调递增,若,则的取值范围为_______

查看答案和解析>>

科目: 来源: 题型:

【题目】经统计分析,我市城区某拥挤路段的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当该路段的车流密度达到180/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20/千米时,车流速度为40千米/小时;当时,车流速度v是车流密度x的一次函数.

1)当时,求函数的表达式;

2)当车流密度x为多大时,该拥挤路段车流量(单位时间内通过该路段某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值(精确到1/小时).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,关于x的方程,下列四个结论中正确的有(

①存在实数k,使得方程恰有2个不同的实根;

②存在实数k,使得方程恰有4个不同的实根;

③存在实数k,使得方程恰有5个不同的实根;

④存在实数k,使得方程恰有8个不同的实根.

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】已知二次函数满足:的最小值为1,且在轴上的截距为4.

(1)求此二次函数的解析式;

(2)若存在区间,使得函数的定义域和值域都是区间,则称区间为函数不变区间”.试求函数的不变区间;

(3)若对于任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市有一面积为12000平方米的三角形地块,其中边长为200米,现计划建一个如图所示的长方形停车场,停车场的四个顶点都在的三条边上,其余的地面全部绿化.若建停车场的费用为180/平方米,绿化的费用为60/平方米,设米,建设工程的总费用为.

1)求关于的函数表达式:

2)求停车场面积最大时的值,并求此时的工程总费用.

查看答案和解析>>

科目: 来源: 题型:

【题目】从全校参加科技知识竞赛初赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直方图(如图),图中从左到右各小组的小长方形的高之比是,最后一组的频数是6.请结合频率分布直方图提供的信息,解答下列问题:

1)样本的容量是多少?

2)求样本中成绩在分的学生人数;

3)从样本中成绩在90.5分以上的同学中随机地抽取2人参加决赛,求最高分甲被抽到的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中为常数,为自然对数的底数.

1)当时,求的最大值;

2)若在区间上的最大值为,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆 的离心率为,过椭圆的焦点且与长轴垂直的弦长为1

1)求椭圆C的方程;

2)设点M为椭圆上第一象限内一动点,AB分别为椭圆的左顶点和下顶点,直线MBx轴交于点C,直线MAy轴交于点D,求证:四边形ABCD的面积为定值.

查看答案和解析>>

同步练习册答案