科目: 来源: 题型:
【题目】设数列的前项和,已知,.
(1)求证:数列为等差数列,并求出其通项公式;
(2)设,又对一切恒成立,求实数的取值范围;
(3)已知为正整数且,数列共有项,设,又,求的所有可能取值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某企业生产某种商品吨,此时所需生产费用为()万元,当出售这种商品时,每吨价格为万元,这里(为常数,)
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆锥的顶点为,底面圆心为,半径为.
(1)设圆锥的母线长为,求圆锥的体积;
(2)设,、是底面半径,且,为线段的中点,如图.求异面直线与所成的角的大小.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数.
(1)当时,解不等式;
(2)若关于的方程在区间上恰有一个实数解,求的取值范围;
(3)设,若存在使得函数在区间上的最大值和最小值的差不超过1,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利,根据大数据统计,某条地铁线路运行时,发车时间间隔(单位:分钟)满足: ,平均每班地铁的载客人数 (单位:人)与发车时间间隔近似地满足函数关系:,
(1)若平均每班地铁的载客人数不超过1560人,试求发车时间间隔的取值范围;
(2)若平均每班地铁每分钟的净收益为(单位:元),则当发车时间间隔为多少时,平均每班地铁每分钟的净收益最大?并求出最大净收益.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在上的函数满足:①对一切恒有;②对一切恒有;③当时,,且;④若对一切(其中),不等式恒成立.
(1)求的值;
(2)证明:函数是上的递增函数;
(3)求实数的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,梯形ABCD所在的平面与等腰梯形ABEF所在的平面互相垂直,AB∥CD∥EF,AB⊥AD,CD=DA=AF=FE=2,AB=4.
(1)求证:DF∥平面BCE;
(2)求二面角C—BF—A的正弦值;
(3)线段CE上是否存在点G,使得AG⊥平面BCF?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com