科目: 来源: 题型:
【题目】在平面直角坐标系中,直线与原点为圆心的圆相交所得弦长为.
(1)若直线与圆切于第一象限,且直线与坐标轴交于点,当面积最小时,求直线的方程;
(2)设是圆上任意两点,点关于轴的对称点为,若直线分别交于轴与点和,问是否为定值?若是,请求处该定值;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如下图所示,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D,E分别在棱PB,PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值;
(3)是否存在点E,使得二面角A-DE-P为直二面角?并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】设直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),对于下列四个命题:
A.M中所有直线均经过一个定点 |
B.存在定点P不在M中的任一条直线上 |
C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上 |
D.M中的直线所能围成的正三角形面积都相等 |
其中真命题的代号是 (写出所有真命题的代号).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的上顶点为点,右焦点为.延长交椭圆于点,且满足.
(1)试求椭圆的标准方程;
(2)过点作与轴不重合的直线和椭圆交于两点,设椭圆的左顶点为点,且直线分别与直线交于两点,记直线的斜率分别为,则与之积是否为定值?若是,求出该定值;若不是,试说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】春节过后,某市教育局从全市高中生中抽去了100人,调查了他们的压岁钱收入情况,按照金额(单位:百元)分成了以下几组:,,,,,.统计结果如下表所示:
该市高中生压岁钱收入可以认为服从正态分布,用样本平均数(每组数据取区间的中点值)作为的估计值.
(1)求样本平均数;
(2)求;
(3)某文化公司赞助了市教育局的这次社会调查活动,并针对该市的高中生制定了赠送“读书卡”的活动,赠送方式为:压岁钱低于的获赠两次读书卡,压岁钱不低于的获赠一次读书卡.已知每次赠送的读书卡张数及对应的概率如下表所示:
现从该市高中生中随机抽取一人,记(单位:张)为该名高中生获赠的读书卡的张数,求的分布列及数学期望.
参考数据:若,则,.
查看答案和解析>>
科目: 来源: 题型:
【题目】在矩形中,,,点是线段上靠近点的一个三等分点,点是线段上的一个动点,且.如图,将沿折起至,使得平面平面.
(1)当时,求证:;
(2)是否存在,使得与平面所成的角的正弦值为?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】定义在上的函数,如果满足;对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数.
(Ⅰ)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(Ⅱ)若是上的有界函数,且的上界为3,求实数的取值范围;
(Ⅲ)若,求函数在上的上界的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com