相关习题
 0  262607  262615  262621  262625  262631  262633  262637  262643  262645  262651  262657  262661  262663  262667  262673  262675  262681  262685  262687  262691  262693  262697  262699  262701  262702  262703  262705  262706  262707  262709  262711  262715  262717  262721  262723  262727  262733  262735  262741  262745  262747  262751  262757  262763  262765  262771  262775  262777  262783  262787  262793  262801  266669 

科目: 来源: 题型:

【题目】已知函数f(x)g(x)(a>0,且a≠1).

(1)求函数φ(x)f(x)g(x)的定义域;

(2)试确定不等式f(x)≤g(x)x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量(单位:千克)与时间(单位:小时)的函数图像,则以下关于该产品生产状况的正确判断是( ).

A.在前三小时内,每小时的产量逐步增加

B.在前三小时内,每小时的产量逐步减少

C.最后一小时内的产量与第三小时内的产量相同

D.最后两小时内,该车间没有生产该产品

查看答案和解析>>

科目: 来源: 题型:

【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足

1)将利润表示为产量万台的函数;

2)当产量为何值时,公司所获利润最大?最大利润为多少万元?

查看答案和解析>>

科目: 来源: 题型:

【题目】201911日起我国实施了个人所得税的新政策,新政策的主要内容有:①个税起征点为5000元,②每月应纳税所得额(含税)=收入个税起征点专项附加扣除.赵先生某月收入元,符合赡养老人与子女教育专项附加扣除,共计3000.

新个税政策的税率表部分内容如下:

级数

一级

二级

三级

每月应纳税所得额(含税)

不超过3000元的部分

超过3000元至12000元的部分

超过1200025000元的部分

税率(%)

3

10

20

1)当时,赵先生当月应缴纳的个税额是多少?

2)设赵先生当月应缴纳的个税额是元,若,请求出关于的函数;

3)若赵先生该月应纳的个税额为3020元,问他的月收入是多少元?

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数gx=ax2﹣2ax+1+ba0)在区间[03]上有最大值4和最小值1.设fx=

1)求ab的值;

2)若不等式f2x﹣k2x≥0x∈[﹣11]上有解,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系xOy中,直线l的参数方程为t是参数),在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为

(Ⅰ)写出直线l的普通方程、曲线C的参数方程;

(Ⅱ)过曲线C上任意一点A作与直线l的夹角为45°的直线,设该直线与直线l交于点B,求的最值.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于函数,记集合;

(1)设,,求.

(2)设,,若,求实数a的取值范围.

(3)设.如果求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数,其中a∈R.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当 时,设为曲线上任意两点,曲线在点处的切线斜率为k,证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知点F(2,0),动点P满足:点P到直线x=-1的距离比其到点F的距离小1.

(Ⅰ)求点P的轨迹C的方程;

(Ⅱ)过F作直线l垂直于x轴与曲线C交于AB两点,Q是曲线C上异于AB的一点,设曲线C在点ABQ处的切线分别为l1l2l3,切线l1l2交于点R,切线l1l3交于点S,切线l2l3交于点T,若RST的面积为6,求Q点的横坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.

写出关于的函数关系式;

应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)

查看答案和解析>>

同步练习册答案