科目: 来源: 题型:
【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.
(1)求证:;
(2)若平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC;若不存在,试说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆的方程为(x-1)2+(y-1)2=9,P(2,2)是该圆内一点,过点P的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是______ .
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l1:x+my+1=0和l2:(m-3)x-2y+(13-7m)=0.
(1)若l1⊥l2,求实数m的值;
(2)若l1∥l2,求l1与l2之间的距离d.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆M:与轴相切.
(1)求的值;
(2)求圆M在轴上截得的弦长;
(3)若点是直线上的动点,过点作直线与圆M相切,为切点,求四边形面积的最小值.
【答案】(1) (2) (3)
【解析】试题分析:(1)先将圆的一般方程化成标准方程,利用直线和圆相切进行求解;(2) 令,得到关于的一元二次方程进行求解;(3)将四边形的面积的最小值问题转化为点到直线的的距离进行求解.
试题解析:(1) ∵圆M:与轴相切
∴ ∴
(2) 令,则 ∴
∴
(3)
∵的最小值等于点到直线的距离,
∴ ∴
∴四边形面积的最小值为.
【题型】解答题
【结束】
20
【题目】在平面直角坐标系中,圆的方程为,且圆与轴交于, 两点,设直线的方程为.
(1)当直线与圆相切时,求直线的方程;
(2)已知直线与圆相交于, 两点.
(ⅰ)若,求实数的取值范围;
(ⅱ)直线与直线相交于点,直线,直线,直线的斜率分别为, , ,
是否存在常数,使得恒成立?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com