科目: 来源: 题型:
【题目】已知f(x)=ln(ax+b)+x2(a≠0).
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=x,求a、b的值;
(2)若f(x)≤x2+x恒成立,求ab的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x),g(x)=f(x)-a,
(1)讨论函数g(x)的零点个数,并写出相应的实数a的取值范围;
(2)当函数g(x)有四个零点分别为x1,x2,x3,x4时,求x1+x2+x3+x4的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()
A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9
C. (x+5)2+y2=16D. x2+(y+5)2=9
查看答案和解析>>
科目: 来源: 题型:
【题目】已知变量、之间的线性回归方程为,且变量、之间的一-组相关数据如下表所示,则下列说法错误的是( )
A.可以预测,当时,B.
C.变量之间呈负相关关系D.该回归直线必过点
查看答案和解析>>
科目: 来源: 题型:
【题目】已知数列{an}的前n项和Sn=2an-2(n∈Z+).
(1)求通项公式an;
(2)设,为数列{bn}的前n项和,求正整数k,使得对任意的n∈Z+,均有T4≥Tn;
(3)设,Rn为数列{cn}的前n项和,若对任意的n∈Z+,均有Rn<λ,求λ的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数(a为实常数).
(1)若,作函数的图象并写出单调减区间;
(2)当时,设在区间上的最小值为,求的表达式;
(3)当时对于函数和函数,若对任意的,总存在使成立,求实数m的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知集合A={x|1≤x≤3},B={x|x>2}.
(Ⅰ)分别求A∩B,(RB)∪A;
(Ⅱ)已知集合C={x|1<x<a},若CA,求实数a的取值集合.
查看答案和解析>>
科目: 来源: 题型:
【题目】以下四个命题:
①“若,则”的逆否命题为真命题
②“”是“函数在区间上为增函数”的充分不必要条件
③若为假命题,则,均为假命题
④对于命题:,,则为:,
其中真命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com