科目: 来源: 题型:
【题目】(本小题满分14分)如图,在边长为的菱形中,,点,分别是边,的中点,.沿将△翻折到△,连接,得到如图的五棱锥,且.
(1)求证:平面;
(2)求四棱锥的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,圆与轴交于、两点,动直线()与轴、轴分别交于点、,与圆交于、两点(点纵坐标大于点纵坐标).
(1)若,点与点重合,求点的坐标;
(2)若,,求直线将圆分成的劣弧与优弧之比;
(3)若,设直线、的斜率分别为、,是否存在实数使得?若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).
(Ⅰ)将曲线的极坐标方程化为直角坐标方程;
(Ⅱ)若直线与曲线相交于,两点,且,求直线的倾斜角的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:(a>b>0)的左、右焦点分别为F1,F2,P为椭圆C上一点,且PF2垂直于x轴,连结PF1并延长交椭圆于另一点Q,设=λ.
(1)若点P的坐标为(2,3),求椭圆C的方程及λ的值;
(2)若4≤λ≤5,求椭圆C的离心率的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】对称轴为坐标轴的椭圆的焦点为,,在上.
(1)求椭圆的方程;
(2)设不过原点的直线与椭圆交于,两点,且直线,,的斜率依次成等比数列,则当的面积为时,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】为全面贯彻党的教育方针,坚持立德树人,适应经济社会发展对多样化高素质人才的需要,按照国家统一部署,湖南省高考改革方案从2018年秋季进入高一年级的学生开始正式实施.新高考改革中,明确高考考试科目由语文、数学、英语科,及考生在思想政治、历史、地理、物理、化学、生物个科目中自主选择的科组成,不分文理科.假设个自主选择的科目中每科被选择的可能性相等,每位学生选择每个科目互不影响,甲、乙、丙为某中学高一年级的名学生.
(1)求这名学生都选择了物理的概率.
(2)设为这名学生中选择物理的人数,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,公路围成的是一块顶角为的角形耕地,其中,在该块土地中处有一小型建筑,经测量,它到公路的距离分别为,现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园.
(1)以为坐标原点建立适当的平面直角坐标系,并求出点的坐标;
(2)三条公路围成的工业园区的面积恰为,求公路所在直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com