相关习题
 0  262670  262678  262684  262688  262694  262696  262700  262706  262708  262714  262720  262724  262726  262730  262736  262738  262744  262748  262750  262754  262756  262760  262762  262764  262765  262766  262768  262769  262770  262772  262774  262778  262780  262784  262786  262790  262796  262798  262804  262808  262810  262814  262820  262826  262828  262834  262838  262840  262846  262850  262856  262864  266669 

科目: 来源: 题型:

【题目】在平面直角坐标系中,过椭圆右顶点的直线交椭圆于另外一点,已知点的纵坐标为.

(1)求椭圆的方程;

(2)若直线与椭圆交于两点分别在直线的上、下方,设四边形的面积为,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某市10000名职业中学高三学生参加了一项综合技能测试,从中随机抽取100名学生的测试成绩,制作了以下的测试成绩(满分是184分)的频率分布直方图.

市教育局规定每个学生需要缴考试费100元.某企业根据这100000名职业中学高三学生综合技能测试成绩来招聘员工,划定的招聘录取分数线为172分,且补助已经被录取的学生每个人元的交通和餐补费.

(1)已知甲、乙两名学生的测试成绩分别为168分和170分,求技能测试成绩的中位数,并对甲、乙的成绩作出客观的评价;

(2)令表示每个学生的交费或获得交通和餐补费的代数和,把的函数来表示,并根据频率分布直方图估计的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知三棱锥PABC中,ACBCACBC2PAPBPC3OAB中点,EPB中点.

1)证明:平面PAB⊥平面ABC

2)求点B到平面OEC的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在多面体中,已知,平面平面的中点,连接.

(1)求证:平面

(2)求三棱锥的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于三次函数,定义的导函数的导函数,经过讨论发现命题:“一定存在实数,使得成立”为真,请你根据这一结论判断下列命题:

①一定存在实数,使得成立;②一定存在实数,使得成立;③若,则;④若存在实数,且满足:,则函数上一定单调递增,所有正确的序号是( )

A. ①② B. ①③ C. ②③ D. ②④

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法:①越小,XY有关联的可信度越小;②若两个随机变量的线性相关性越强,则相关系数r的值越接近于1;“若,则类比推出,“若,则;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,推理形式错误.其中说法正确的有( )个

A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:

【题目】已知以点为圆心的圆C被直线截得的弦长为

1)求圆C的标准方程:

2)求过与圆C相切的直线方程:

3)若Q是直线上的动点,QRQS分别切圆CRS两点.试问:直线RS是否恒过定点?若是,求出恒过点坐标:若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.

组号

分组

频数

频率

第1组

5

第2组

第3组

30

第4组

20

第5组

10

(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;

(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;

(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在几何体P﹣ABCD中,平面ABCD⊥平面PAB ,四边形ABCD为矩形,△PAB为正三角形,若AB=2,AD=1,E,F 分别为AC,BP中点.

(1)求证:EF∥平面PCD;

(2)求直线DP与平面ABCD所成角的正弦值.

查看答案和解析>>

同步练习册答案