科目: 来源: 题型:
【题目】已知函数.
(1)求的极值;
(2)若函数在定义域内为增函数,求实数的取值范围;
(3)设,若函数存在两个零点,且满足,问:函数在处的切线能否平行于轴?若能,求出该切线方程,若不能,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数, ,在处的切线方程为.
(1)求, ;
(2)若,证明: .
【答案】(1), ;(2)见解析
【解析】试题分析:(1)求出函数的导数,得到关于 的方程组,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用导数研究其单调性可得
,
从而证明.
试题解析:((1)由题意,所以,
又,所以,
若,则,与矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
当时, , 单调递减,且;
当时, , 单调递增;且,
所以在上当单调递减,在上单调递增,且,
故,
故.
【点睛】本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.
【题型】解答题
【结束】
22
【题目】在平面直角坐标系中,曲线的参数方程为(, 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程;
(2)在曲线上取两点, 与原点构成,且满足,求面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】为检查某工厂所生产的8万台电风扇的质量,随机抽取20台,其无故障连续使用时限(单位:h)统计如下:
分组 | 频数 | 频率 | 频率/组距 |
1 | 0.05 | 0.0025 | |
1 | 0.05 | 0.0025 | |
2 | 0.10 | 0.0050 | |
3 | 0.15 | 0.0075 | |
4 | 0.20 | 0.0100 | |
6 | 0.30 | 0.0150 | |
2 | 0.10 | 0.0050 | |
1 | 0.05 | 0.0025 | |
合计 | 20 | 1 | 0.050 |
(1)作出频率分布直方图;
(2)估计8万台电风扇中无故障连续使用时限不低于280h的有多少台;
(3)假设同一组中的数据用该组区间的中点值代替,估计这8万台电风扇的平均无故障连续使用时限.
查看答案和解析>>
科目: 来源: 题型:
【题目】某班同学利用国庆节假期进行社会实践,在年龄段的人群中随机抽取人进行了一次生活习惯是否符合低碳观念的调查,生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数的频率分布直方图:
组别 | 分组 | “低碳族”的人数 | 占本组的频率 |
第1组 | 120 | 0.6 | |
第2组 | 195 | ||
第3组 | 100 | 0.5 | |
第4组 | 0.4 | ||
第5组 | 30 | 0.3 | |
第6组 | 15 | 0.3 |
(1)补全频率分布直方图,并求,,的值;
(2)从年龄段的“低碳族”中采用分层随机抽样的方法抽取6人,求从年龄段的“低碳族”中应抽取的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】为了鼓励市民节约用电,某市实行“阶梯式”电价,将每户居民的月用电量分为二档,月用电量不超过200度的部分按0.5元/度收费,超过200度的部分按0.8元/度收费.某小区共有居民1000户,为了解居民的用电情况,通过抽样,获得了今年7月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.
(1)求的值;
(2)试估计该小区今年7月份用电量用不超过260元的户数;
(3)估计7月份该市居民用户的平均用电费用(同一组中的数据用该组区间的中点值作代表).
查看答案和解析>>
科目: 来源: 题型:
【题目】某中学有初中学生1800人,高中学生1200人.为了解学生本学期课外阅读情况,现采用分层随机抽样的方法,从中抽取了100名学生,先统计了他们的课外阅读时间,然后按初中学生和高中学生分为两组,再将每组学生的阅读时间(单位:h)分为5组:,,,,,并分别加以统计,得到如图所示的频率分布直方图,试估计该校所有学生中,阅读时间不小于30h的学生人数为_______
查看答案和解析>>
科目: 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,其图象与轴相邻的两个交点的距离为.
(1)求函数的解析式;
(2)若将的图象向左平移个长度单位得到函数的图象恰好经过点,求当取得最小值时,在上的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com