相关习题
 0  262700  262708  262714  262718  262724  262726  262730  262736  262738  262744  262750  262754  262756  262760  262766  262768  262774  262778  262780  262784  262786  262790  262792  262794  262795  262796  262798  262799  262800  262802  262804  262808  262810  262814  262816  262820  262826  262828  262834  262838  262840  262844  262850  262856  262858  262864  262868  262870  262876  262880  262886  262894  266669 

科目: 来源: 题型:

【题目】已知球与正三棱柱(底面为正三角形的直棱柱)的所有表面都相切,并且该三棱柱的六个顶点都在球上,则球与球的表面积之比为( )

A.B.C.D.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为了诊断高三学生在市一模考试中文科数学备考的状况,随机抽取了50名学生的市一模数学成绩进行分析,将这些成绩分为九组,第一组[6070),第二组[7080)……,第九组[140150],并绘制了如图所示的频率分布直方图.

1)试求出的值并估计该校文科数学成绩的众数和中位数;

2)现从成绩在[120150]的同学中随机抽取2人进行谈话,那么抽取的2人中恰好有一人的成绩在[130,140)中的概率是多少?

查看答案和解析>>

科目: 来源: 题型:

【题目】某果园基地培育出一种特色水果,要在某一季节内采摘一批这种水果销往A市,每售出1吨这种水果获利800元,未售出的水果每吨亏损400元,根据去年市场调研数据统计,该季节A市对这种水果的市场需求量t(单位:吨,100≤t≤150)的频率分布直方图如图所示.现该果园计划采摘140吨这种水果运往A市,经销这种水果的利润Q(单位:元)

(1)求Qt的函数表达式;

(2)视频率为概率,求利润Q的分布列及数学期望.(每组数据以区间的中点值为代表).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知正方形ABCD的边长为7,点MAB上,点NBC上,且AM=BN=3,现有一束光线从点M射向点N,光线每次碰到正方形的边时反射,则这束光线从第一次回到原点M时所走过的路程为( )

A. B. 60 C. D. 70

查看答案和解析>>

科目: 来源: 题型:

【题目】设甲、乙、丙三个羽毛球协会的运动员人数分别为18918,先采用分层抽样的方法从这三个协会中抽取5名运动员参加比赛.

1)求应从这三个协会中分别抽取的运动员人数;

2)将抽取的5名运动员进行编号,编号分别为,从这5名运动员中随机抽取2名参加双打比赛. 编号为的两名运动员至少有一人被抽到为事件A,求事件A发生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(1)当a=1时,求函数f(x)的单调递减区间;

(2)当a<0时,f(x)上的值域为,求a,b的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年国际山地旅游大会于10月14日在贵州召开,据统计有来自全世界的4000名女性和6000名男性徒步爱好者参与徒步运动,其中抵达终点的女性与男性徒步爱好者分别为1000名和2000名,抵达终点的徒步爱好者可获得纪念品一份。若记者随机电话采访参与本次徒步运动的1名女性和1名男性徒步爱好者,其中恰好有1名徒步爱好者获得纪念品的概率是( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出09之间取整数值的随机数,指定01表示没有击中目标,234567 89表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________

查看答案和解析>>

科目: 来源: 题型:

【题目】已知盒子中装有红色、蓝色纸牌各100张,每种颜色纸牌均含标数为的纸牌各一张,两种颜色纸牌的标数总和记为.

对于给定的正整数,若能从盒子中取出若干张纸牌,使其标数之和恰为,则称其为一种取牌“n—方案”.记不同的n—方案种数为.试求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在等差数列中, ,其前项和为,等比数列的各项均为正数, ,且 .

(1)求数列的通项公式;

(2)令,设数列的前项和为,求)的最大值与最小值.

查看答案和解析>>

同步练习册答案