科目: 来源: 题型:
【题目】已知关于的二次函数,其中,为实数,事件为“函数在区间为增函数”.
(1)若为区间上的整数值随机数,为区间上的整数值随机数,求事件发生的概率;
(2)若为区间上的均匀随机数,为区间上的均匀随机数,求事件发生的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】最近上映的电影《后来的我们》引起了一阵热潮,为了了解大众对这部电影的评价,随机访问了50名观影者,根据这50人对该电影的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为,,…,,.
(1)求频率分布直方图中的值,并估计观影者对该电影评分不低于80的概率;
(2)由频率分布直方图估计评分的中位数(保留两位小数)与平均数;
(3)从评分在的观影者中随机抽取2人,求至少有一人评分在的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题:(1)若,为非零向量且,则;(2)已知向量,,若,则;(3)若,,为单位向量,且,则三角形为等边三角形;其中正确的个数是( )
A.1B.2C.3D.0
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)在中,角A,B,C所对的边分别是a,b,c,证明余弦定理:;
(2)长江某地南北岸平行,如图所示,江面宽度,一艘游船从南岸码头A出发航行到北岸,假设游船在静水中的航行速度,水流速度,设和的夹角为θ(),北岸的点在点A的正北方向.
①当多大时,游船能到达处,需要航行多少时间?
②当时,判断游船航行到达北岸的位置在的左侧还是右侧,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与的浓度是否有关,现采集到某城市周一至周五某一时间段车流量与的浓度的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量(万辆) | 100 | 102 | 108 | 114 | 116 |
的浓度(微克/立方米) | 78 | 80 | 84 | 88 | 90 |
(1)根据上表数据,用最小二乘法求出关于的线性回归方程;
(2)若周六同一时间段车流量是200万辆,试根据(1)求出的线性回归方程,预测此时的浓度为多少.
参考公式:,.
查看答案和解析>>
科目: 来源: 题型:
【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com