相关习题
 0  262724  262732  262738  262742  262748  262750  262754  262760  262762  262768  262774  262778  262780  262784  262790  262792  262798  262802  262804  262808  262810  262814  262816  262818  262819  262820  262822  262823  262824  262826  262828  262832  262834  262838  262840  262844  262850  262852  262858  262862  262864  262868  262874  262880  262882  262888  262892  262894  262900  262904  262910  262918  266669 

科目: 来源: 题型:

【题目】某种产品的质量以其质量指标值来衡量.当时,产品为一等品;当时,产品为二等品;当时,产品为三等品.现从甲、乙两条生产线,各随机抽取了100件该产品作为样本,测量每件产品的质量指标值,整理得到甲、乙两条生产线产品的质量指标值的频率分布直方图如图所示,视样本的频率为总体的概率.

1)若从甲、乙生产线生产的产品中各随机抽取1件,求恰好抽到1件一等品的概率;

2)若一件三等品、二等品、一等品的利润分别为10元、20元、30元,从乙生产线生产的产品中随机抽取2件,求这两件产品的利润之和的分布列和数学期望;

3)若从甲生产线生产的产品中随机抽取件,其中抽到二等品的件数为随机变量,且的数学期望不小于1200,求的最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校从高一年级的一次月考成绩中随机抽取了 50名学生的成绩(满分100分,且抽取的学生成绩都在内),按成绩分为五组,得到如图所示的频率分布直方图.

1)用分层抽样的方法从月考成绩在内的学生中抽取6人,求分别抽取月考成绩在内的学生多少人;

2)在(1)的前提下,从这6名学生中随机抽取2名学生进行调查,求月考成绩在内至少有1名学生被抽到的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示的三棱台中,分别为的中点,

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】《周髀算经》 是我国古代的天文学和数学著作。其中一个问题的大意为:一年有二十四个节气(如图),每个节气晷长损益相同(即物体在太阳的照射下影子长度的增加量和减少量相同).若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:ー丈等于十尺,一尺等于十寸),则立冬节气的晷长为( )

A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的是( )

A. 命题“若,则”的逆否命题为真命题

B. 命题“若,则”的否命题为“若,则

C. 命题“,使得”的否定是“,都有

D. ,则“”是“”的充分不必要条件

查看答案和解析>>

科目: 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是,曲线的极坐标方程是

1)求直线l和曲线的直角坐标方程,曲线的普通方程;

2)若直线l与曲线和曲线在第一象限的交点分别为PQ,求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)判断函数的单调性;

2)若对任意时,都有,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】(2017·江苏高考)如图,在三棱锥ABCD中,ABADBCBD,平面ABD⊥平面BCD,点EF(EAD不重合)分别在棱ADBD上,且EFAD.

求证:(1)EF∥平面ABC

(2)ADAC.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,已知以点为圆心的及其上一点.

1)设圆轴相切,与圆外切,且圆心在直线上,求圆的标准方程;

2)设平行于的直线与圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的实轴长为4,焦距为

1)求椭圆C的标准方程;

2)设直线l经过点且与椭圆C交于不同的两点MN(异于椭圆的左顶点),设点Qx轴上的一个动点.直线QMQN的斜率分别为,试问:是否存在点Q,使得为定值?若存在.求出点Q的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案