科目: 来源: 题型:
【题目】设 a ∈ N+ , a ≥ 2 , 集合.在闭区间[ 1, a ] 上是否存在 b , 使 A ∩ B ≠ ? 如果存在, 求出 b 的一切可能值及相应的 A ∩ B;如果不存在, 试说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】一个三棱锥的三个侧面中有两个是等腰直角三角形, 另一个是边长为 1 的正三角形.那么, 这个三棱锥的体积大小 ( ).
A. 有惟一确定的值 B. 有 2 个不同值
C. 有 3 个不同值 D. 有 3 个以上不同值
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线的焦点为是抛物线上的任意一点.当轴时,的面积为4(为坐标原点).
(1)求抛物线的方程;
(2)若,连接并延长交抛物线于,点关于轴对称,点为直线与轴的交点,且为直角三角形,求点到直线的距离的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某高校自主招生一次面试成绩的茎叶图和频率分布直方图均收到了不同程度的损坏,其可见部分信息如下,据此解答下列问题:
(1)求参加此次高校自主招生面试的总人数、面试成绩的中位数及分数在内的人数;
(2)若从面试成绩在内的学生中任选三人进行随机复查,求恰好有二人分数在内的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】某校医务室欲研究昼夜温差大小与高三患感冒人数多少之间的关系,他们统计了2019年9月至2020年1月每月8号的昼夜温差情况与高三因患感冒而就诊的人数,得到如下资料:
日期 | 2019年9月8日 | 2019年10月8日 | 2019年11月8日 | 2019年12月8日 | 2020年1月8日 |
昼夜温差 | 5 | 8 | 12 | 13 | 16 |
就诊人数 | 10 | 16 | 26 | 30 | 35 |
该医务室确定的研究方案是先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再用被选取的2组数据进行检验.假设选取的是2019年9月8日与2020年1月8日的2组数据.
(1)求就诊人数关于昼夜温差的线性回归方程 (结果精确到0.01)
(2)若由(1)中所求的线性回归方程得到的估计数据与所选出的检验数据的误差均不超过3人,则认为得到的线性回归方程是理想的,试问该医务室所得线性回归方程是否理想?
参考公式:,.
查看答案和解析>>
科目: 来源: 题型:
【题目】精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量万件(生产量与销售量相等)与推广促销费万元之间的函数关系为(其中推广促销费不能超过5千元).已知加工此农产品还要投入成本万元(不包括推广促销费用),若加工后的每件成品的销售价格定为元/件.
(1)试将该批产品的利润万元表示为推广促销费万元的函数;(利润=销售额-成本-推广促销费)
(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com