科目: 来源: 题型:
【题目】某学校食堂对30名高三学生偏爱蔬菜与偏爱肉类进行了一次调查,将统计数据制成如下表格:
偏爱蔬菜 | 偏爱肉类 | |
男生人 | 4 | 8 |
女生人 | 16 | 2 |
(1)求这30名学生中偏爱蔬菜的概率;
(2)根据表格中的数据,是否有99.5%的把握认为偏爱蔬菜与偏爱肉类与性别有关?
附:,.
0 | 0 | 0 | |
6 | 7 | 10.8 |
查看答案和解析>>
科目: 来源: 题型:
【题目】已知曲线的参数方程为(为参数),当时,曲线上对应的点为.以原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(I)求曲线的普通方程和曲线的直角坐标方程;
(II)设曲线与的公共点为,,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如下图,在四棱锥中,平面平面,,,,,点在棱上,且.
(1)证明:;
(2)是否存在实数,使得二面角的余弦值为?若存在,求出实数的值;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】直线l的极坐标方程为θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲线C1的参数方程为(t为参数),圆C2的普通方程为x2+y2+2x=0.
(1)求C1,C2的极坐标方程;
(2)若l与C1交于点A,l与C2交于点B,当|AB|=2时,求△ABC2的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1) 求的值;
(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大
查看答案和解析>>
科目: 来源: 题型:
【题目】以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为方程为(),直线的参数方程为(为参数).
(1)点在曲线上,且曲线在点处的切线与直线垂直,求点的直角坐标和曲线C的参数方程;
(2)设直线与曲线有两个不同的交点,求直线的斜率的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐标方程为,曲线的极坐标方程为().
(Ⅰ)设为参数,若,求直线的参数方程;
(Ⅱ)已知直线与曲线交于,,设,且,求实数的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某研究公司为了调查公众对某事件的关注程度,在某年的连续6个月内,月份和关注人数(单位:百)()数据做了初步处理,得到下面的散点图及一些统计量的值.
17.5 | 35 | 36.5 |
(1)由散点图看出,可用线性回归模型拟合y与x的关系,请用相关系数加以说明,并建立y关于x的回归方程;
(2)经统计,调查材料费用v(单位:百元)与调查人数满足函数关系,求材料费用的最小值,并预测此时的调查人数;
(3)现从这6个月中,随机抽取3个月份,求关注人数不低于1600人的月份个数分布列与数学期望.
参考公式:相关系数,若,则y与x的线性相关程度相当高,可用线性回归模型拟合y与x的关系.回归方程中斜率与截距的最小二乘估计公式分别为,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com