相关习题
 0  262788  262796  262802  262806  262812  262814  262818  262824  262826  262832  262838  262842  262844  262848  262854  262856  262862  262866  262868  262872  262874  262878  262880  262882  262883  262884  262886  262887  262888  262890  262892  262896  262898  262902  262904  262908  262914  262916  262922  262926  262928  262932  262938  262944  262946  262952  262956  262958  262964  262968  262974  262982  266669 

科目: 来源: 题型:

【题目】已知函数.为自然对数的底数)

1时求函数在点处的切线方程;

2)若,求函数的极值.

查看答案和解析>>

科目: 来源: 题型:

【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券2张,每张可获价值50元的奖品;有二等奖券2张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:

1)该顾客中奖的概率;

2)该顾客获得的奖品总价值X元的概率分布列.

查看答案和解析>>

科目: 来源: 题型:

【题目】(1)若个棱长为正整数的正方体的体积之和等于2005,求的最小值,并说明理由;

(2)若个棱长为正整数的正方体的体积之和等于,求的最小值,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】关于利用斜二侧法得到的直观图有下列结论:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形,以上结论正确的是( )

A. ①② B. C. ③④ D. ①②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】2018年8月教育部、国家卫生健康委员会等八个部门联合印发《综合防控儿童青少年近视实话方案》中明确要求,为切实加强新时代儿童青少年近视防控工作,学校应严格组织全体学生每天上、下午各大做1次眼保健操.为了了解学校推广眼保健操是否能有效预防近视,随机从甲学校抽取了50名学生,再从乙学校选出与甲学校被抽取的50名学生视力情况一样的50学生(期中甲学校每天安排学生做眼保健操,乙学校不安排做跟保健操),一段时间后检测他们的视力情况并统计,若视力情况为1.0及以上,则认为该学生视力良好,否则认为该学生的视力一般,表1为甲学校视力情况的频率分布表,表2为乙学校学生视力情况的频率分布表,根据表格回答下列问题:

表1 甲学校学生视力情况的频率分布表

视力情况

0.6

0.8

1.0

1.2

1.5

频 数

1

1

15

15

18

表2 乙学校学生视力情况的频率分布表

视力情况

0.5

0.6

0.8

1.0

1.2

1.5

频 数

2

2

4

19

13

10

(1)求在甲学校的50名学生中随机选择1名同学,求其视力情况为良好的概率;

(2)根据表1,表2,对在学校推广眼保健操的必要性进行分析;

(3)在乙学校视力情况一般的学生中选择2人,了解其具体用眼习惯,求这两人视力情况都为0.8的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数(其中为自然对数的底数,…).

(1)时,求函数的极值;

(2)若函数在区间上单调递增,求的取值范围;

(3)若,当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目: 来源: 题型:

【题目】在函数定义域内,若存在区间,使得函数值域为,则称此函数为“档类正方形函数”,已知函数.

(1)当时,求函数的值域;

(2)若函数的最大值是1,求实数的值;

(3)当时,是否存在,使得函数为“1档类正方形函数”?若存在,求出实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的右焦点F与抛物线焦点重合,且椭圆的离心率为,过轴正半轴一点 且斜率为的直线交椭圆于两点.

(1)求椭圆的标准方程;

(2)是否存在实数使以线段为直径的圆经过点,若存在,求出实数的值;若不存在说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线,过且斜率为1的直线与抛物线交于不同的两点

(1)求的取值范围;

(2)若线段的垂直平分线交轴于点,求面积的最大值。

查看答案和解析>>

同步练习册答案