科目: 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)若两条互相垂直的直线都经过原点(两条直线与坐标轴都不重合)且与曲线分别交于点(异于原点),且,求这两条直线的直角坐标方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系xOy中,已知直线l过点P(2,2).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ﹣ρcos2θ﹣4cosθ=0.
(1)求C的直角坐标方程;
(2)若l与C交于A,B两点,求的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】随机抽取某校高一100名学生的期末考试英语成绩(他们的英语成绩都在80分140分之间),将他们的英语成绩(单位:分)分成:,,,,六组,得到如图所示的部分频率分布直方图,已知成绩处于内与内的频数之和等于成绩处于内的频数,根据图中的信息,回答下列问题:
(1)求频率分布直方图中未画出的小矩形的面积之和;
(2)求成绩处于内与内的频率之差;
(3)用分层抽样的方法从成绩不低于120分的学生中选取一个容量为6的样本,将该样本看成一个总体,从中任选2人,求这2人中恰有一人成绩低于130分的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)
①甲地5个数据的中位数为24,众数为22;
②乙地5个数据的中位数为27,总体均值为24;
③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.
则肯定进入夏季的地区有_____.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》是中国古代的数学专著,其中的“更相减损术”可以用来求两个数的最大公约数,原文是:可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之. 翻译为现代的语言如下:如果需要对分数进行约分,那么可以折半的话,就折半(也就是用2来约分).如果不可以折半的话,那么就比较分母和分子的大小,用大数减去小数,互相减来减去,一直到减数与差相等为止,用这个相等的数字来约分,现给出“更相减损术”的程序框图如图所示,如果输入的,,则输出的( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目: 来源: 题型:
【题目】已知△ABC的内角A,B,C所对边分别为a、b、c,且2acosC=2b-c.
(1)求角A的大小;
(2)若AB=3,AC边上的中线SD的长为,求△ABC的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】我国上是世界严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准(吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全市民月用水量的分布情况,通过抽样,获得了100位居民某年的月用水量(单位:吨),将数据按照, ,…, 分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中 的值;
(Ⅱ)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使的居民每月的用水量不超过标准(吨),估计的值,并说明理由;
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,以轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)若两条互相垂直的直线都经过原点(两条直线与坐标轴都不重合)且与曲线分别交于点(异于原点),且,求这两条直线的直角坐标方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂对一批新产品的长度(单位:)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )
A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com