相关习题
 0  262825  262833  262839  262843  262849  262851  262855  262861  262863  262869  262875  262879  262881  262885  262891  262893  262899  262903  262905  262909  262911  262915  262917  262919  262920  262921  262923  262924  262925  262927  262929  262933  262935  262939  262941  262945  262951  262953  262959  262963  262965  262969  262975  262981  262983  262989  262993  262995  263001  263005  263011  263019  266669 

科目: 来源: 题型:

【题目】如图,将边长为2的正方形ABCD沿PD、PC翻折至A、B两点重合,其中P是AB中点,在折成的三棱锥A(B)-PDC中,点Q在平面PDC内运动,且直线AQ与棱AP所成角为60,则点Q运动的轨迹是

A. B. 椭圆 C. 双曲线 D. 抛物线

查看答案和解析>>

科目: 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系xOy中,直线C1的参数方程为t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C2的方程为ρ=﹣2cosθ+2sinθ

)求直线C1的普通方程和圆C2的圆心的极坐标;

)设直线C1和圆C2的交点为AB,求弦AB的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:

(1)P(A),P(B),P(C).

(2)1张奖券的中奖概率.

(3)1张奖券不中特等奖,且不中一等奖的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线 .

(1)判断直线与曲线的位置关系;

(2)若是曲线上的动点,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】某超市在节日期间进行有奖促销,凡在该超市购物满元的顾客,将获得一次摸奖机会,规则如下:一个袋子装有只形状和大小均相同的玻璃球,其中两只是红色,三只是绿色,顾客从袋子中一次摸出两只球,若两只球都是红色,则奖励元;共两只球都是绿色,则奖励元;若两只球颜色不同,则不奖励.

(1)求一名顾客在一次摸奖活动中获得元的概率;

(2)记为两名顾客参与该摸奖活动获得的奖励总数额,求随机变量的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:

一次购物款(单位:元)

顾客人数

统计结果显示位顾客中购物款不低于元的顾客占,该商场每日大约有名顾客,为了增加商场销售额度,对一次购物不低于元的顾客发放纪念品.

(Ⅰ)试确定 的值,并估计每日应准备纪念品的数量;

(Ⅱ)现有人前去该商场购物,求获得纪念品的数量的分布列与数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】“微信运动”是手机推出的多款健康运动软件中的一款,某学校140名老师均在微信好友群中参与了“微信运动”,对运动10000步或以上的老师授予“运动达人”称号,低于10000步称为“参与者”,为了解老师们运动情况,选取了老师们在4月28日的运动数据进行分析,统计结果如下:

运动达人

参与者

合计

男教师

60

20

80

女教师

40

20

60

合计

100

40

140

(Ⅰ)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关?

(Ⅱ)从具有“运动达人”称号的教师中,采用按性别分层抽样的方法选取10人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的10人中随机抽取3人作为代表参加开幕式,设抽取的3人中女教师人数为,写出的分布列并求出数学期望.

参考公式:,其中.

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】给出下面类比推理:

①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;

②“(a+b)c=ac+bc(c≠0)”类比推出“ (c≠0)”;

③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,若a-b=0,则a=b”;

④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b(C为复数集)”.

其中结论正确的个数为(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步练习册答案