科目: 来源: 题型:
【题目】某投资公司计划在甲、乙两个互联网创新项目上共投资1200万元,每个项目至少要投资300万元.根据市场分析预测:甲项目的收益与投入满足,乙项目的收益与投入满足.设甲项目的投入为.
(1)求两个项目的总收益关于的函数.
(2)如何安排甲、乙两个项目的投资,才能使总收益最大?最大总收益为多少?(注:收益与投入的单位都为“万元”)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知命题:函数且,命题:集合,且.
(1)若命题中有且仅有一个为真命题,求实数的取值范围;
(2)设皆为真命题时,的取值范围为集合,已知,若,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆过点,且其中一个焦点的坐标为.
(1)求椭圆的方程;
(2)过椭圆右焦点的直线与椭圆交于两点,在轴上是否存在点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某颜料公司生产A,B两种产品,其中生产每吨A产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨B产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一天之内甲、乙、丙三种染料的用量分别不超过50吨,160吨和200吨,如果A产品的利润为300元/吨,B产品的利润为200元/吨,设公司计划一天内安排生产A产品x吨,B产品y吨.
(I)用x,y列出满足条件的数学关系式,并在下面的坐标系中画出相应的平面区域;
(II)该公司每天需生产A,B产品各多少吨可获得最大利润,最大利润是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】某渔业公司今年初用98万元购进一艘远洋渔船,每年的捕捞可有50万元的总收入,已知使用年()所需(包括维修费)的各种费用总计为万元.
(1)该船捞捕第几年开始赢利(总收入超过总支出,今年为第一年)?
(2)该船若干年后有两种处理方案:
①当赢利总额达到最大值时,以8万元价格卖出;
②当年平均赢利达到最大值时,以26万元卖出,问哪一种方案较为合算?请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼吸酒精含量阀值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车,经过反复试验,喝1瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下:
该函数模型如下:
根据上述条件,回答以下问题:
(1)试计算喝1瓶啤酒后多少小时血液中的酒精含量达到最大值?最大值是多少?
(2)试计算喝1瓶啤酒后多少小时后才可以驾车?(时间以整小时计算)
(参数数据: , , )
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在空间直角坐标系O﹣xyz中,已知正四棱锥P﹣ABCD的所有棱长均为6,底面正方形ABCD的中心在坐标原点,棱AD,BC平行于x轴,AB,CD平行于y轴,顶点P在z轴的正半轴上,点M,N分别在线段PA,BD上,且.
(1)求直线MN与PC所成角的大小;
(2)求锐二面角A﹣PN﹣D的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x2﹣2x.
(1)求f(0)及f(f(1))的值;
(2)求函数f(x)的解析式;
(3)若关于x的方程f(x)﹣m=0有四个不同的实数解,求实数m的取值范围,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com