科目: 来源: 题型:
【题目】为推动文明城市创建,提升城市整体形象,2018年12月30日盐城市人民政府出台了《盐城市停车管理办法》,2019年3月1日起施行.这项工作有利于市民养成良好的停车习惯,帮助他们树立绿色出行的意识,受到了广大市民的一致好评.现从某单位随机抽取80名职工,统计了他们一周内路边停车的时间t(单位:小时),整理得到数据分组及频率分布直方图如下:
(1)从该单位随机选取一名职工,试估计这名职工一周内路边停车的时间少于8小时的概率;
(2)求频率分布直方图中a,b的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知定点F(1,0),定直线,动点M到点F的距离与到直线l的距离相等.
(1)求动点M的轨迹方程;
(2)设点,过点F作一条斜率大于0的直线交轨迹M于A,B两点,分别连接PA,PB,若直线PA与直线PB不关于x轴对称,求实数t的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数,,对任意的,总存在,使得,则称函数具有性质.
(1)判断函数和是否具有性质,说明理由;
(2)若函数,具有性质,求的值;
(3)若函数()在实数集上具有性质,求的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数是单调递增函数,其反函数是.
(1)若,求并写出定义域;
(2)对于⑴的和,设任意,,,求证:;
(3)已知函数和的图象有交点,求证:它们的交点一定在直线上.
查看答案和解析>>
科目: 来源: 题型:
【题目】把边长为a的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为x,容积为.
(1)写出函数的解析式,并求出函数的定义域;
(2)求当x为多少时,容器的容积最大?并求出最大容积.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着经济的发展,个人收入的提高.自2018年10月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:
(1)假如小李某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,y表示应纳的税,试写出调整前后y关于的函数表达式;
(2)某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
先从收入在[3000,5000)及[5000,7000)的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;
(3)小李该月的工资、薪金等税前收入为7500元时,请你帮小李算一下调整后小李的实际收入比调整前增加了多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数.
①对任意的x∈[0,1],总有f(x)≥0;
②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.已知函数g(x)=x2与h(x)=2x﹣b是定义在[0,1]上的函数.
(1)试问函数g(x)是否为G函数?并说明理由;
(2)若函数h(x)是G函数,求实数b组成的集合.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系. 已知曲线的极坐标方程为 ,直线 的参数方程为 (为参数).
(I)分别求曲线的直角坐标方程和直线 的普通方程;
(II)设曲线和直线相交于两点,求弦长的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,已知曲线(为参数),在以原点为极点,轴的非
负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)过点且与直线平行的直线交于,两点,求点到,两点的距离之积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com