科目: 来源: 题型:
【题目】某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为10(a﹣0.8x%)万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.4x%.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创遣的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】若函数满足:对于其定义域内的任何一个自变量,都有函数值,则称函数在上封闭.
(1)若下列函数:,的定义域为,试判断其中哪些在上封闭,并说明理由.
(2)若函数的定义域为,是否存在实数,使得在其定义域上封闭?若存在,求出所有的值,并给出证明;若不存在,请说明理由.
(3)已知函数在其定义域上封闭,且单调递增,若且,求证:.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数的定义域为区间,若对于内任意,都有成立,则称函数是区间的“函数”.
(1)判断函数()是否是“函数”?说明理由;
(2)已知,求证:函数()是“函数”;
(3)设函数是,()上的“函数”,,且存在使得,试探讨函数在区间上零点个数,并用图象作出简要的说明(结果不需要证明).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=sin(2x+)+cos(2x﹣)+cos2x﹣sin2x,x∈R.
(1)求函数f(x)的最小正周期及单调递增区间;
(2)求函数f(x)在区间[﹣]上的最大值和最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知某种气垫船的最大航速是海里小时,船每小时使用的燃料费用和船速的平方成正比.若船速为海里小时,则船每小时的燃料费用为元,其余费用(不论船速为多少)都是每小时元。甲乙两地相距海里,船从甲地匀速航行到乙地.
(1)试把船从甲地到乙地所需的总费用,表示为船速(海里小时)的函数,并指出函数的定义域;
(2)当船速为每小时多少海里时,船从甲地到乙地所需的总费用最少?最少费用为多少元?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+)(A>0,ω>0)的最小正周期为3π,则( )
A. 函数f(x)的一个零点为
B. 函数f(x)的图象关于直线x=对称
C. 函数f(x)图象上的所有点向左平移个单位长度后,所得的图象关于y轴对称
D. 函数f(x)在(0,)上单调递增
查看答案和解析>>
科目: 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量y件 | 100 | 94 | 93 | 90 | 85 | 78 |
附:对于一组数据,其回归直线的斜率的最小二乘估计值为; 本题参考数值:.
(1)若销量y与单价x服从线性相关关系,求该回归方程;
(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com