科目: 来源: 题型:
【题目】学校艺术节对四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:
甲说:“是或作品获得一等奖”; 乙说:“ 作品获得一等奖”;
丙说:“ 两件作品未获得一等奖”; 丁说:“是作品获得一等奖”.
评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知的展开式中第5项与第7项的二项数系数相等,且展开式的各项系数之和为1024,则下列说法正确的是( )
A.展开式中奇数项的二项式系数和为256
B.展开式中第6项的系数最大
C.展开式中存在常数项
D.展开式中含项的系数为45
查看答案和解析>>
科目: 来源: 题型:
【题目】设整数,对置于个点及点处的卡片作如下操作:操作:若某个点处的卡片数不少于3,则可从中取出三张,在三点、、处各放一张;操作:若点处的卡片数不少于,则可从中取出张,在个点处各放一张。证明:只要放置于这个点处的卡片总数不少于,则总能通过若干次操作,使得每个点处的卡片数均不少于。
查看答案和解析>>
科目: 来源: 题型:
【题目】已知质点P绕点M逆时针做匀速圆周运动(如图1),质点P相对于水平直线l的位置用y(米)表示,质点在l上方时,y为正,反之,y为负,是质点与直线l的距离,位置y与时间t(秒)之间的关系为(其中,,)其图象如图2所示.
(1)写出质点P运动的圆形轨道半径及从初始位置到最高点所需要的时间;
(2)求的解析式,并指出质点P第二次出现在直线l上的时刻.
查看答案和解析>>
科目: 来源: 题型:
【题目】在直角坐标坐标系中,曲线的参数方程为(为参数),以直角坐标系的原点为极点,以轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.
(1)求曲线的普通方程;
(2)若与曲线相切,且与坐标轴交于两点,求以为直径的圆的极坐标方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:
①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;
②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;
③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包;
④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包;
⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.
(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖);
(2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);
(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题正确的选项为( )
①平面外一条直线与平面内的一条直线平行,则该直线与此平面平行;
②一个平面内的一条直线与另一个平面平行,则这两个平面平行;
③一条直线与一个平面内的两条直线垂直,则该直线与此平面垂直;
④一个平面过另一个平面的垂线,则这两个平面垂直.
A.①②B.②③C.①④D.③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com