相关习题
 0  262950  262958  262964  262968  262974  262976  262980  262986  262988  262994  263000  263004  263006  263010  263016  263018  263024  263028  263030  263034  263036  263040  263042  263044  263045  263046  263048  263049  263050  263052  263054  263058  263060  263064  263066  263070  263076  263078  263084  263088  263090  263094  263100  263106  263108  263114  263118  263120  263126  263130  263136  263144  266669 

科目: 来源: 题型:

【题目】数列{an}满足an+1+(-1)n an =2n-1,则{an}的前64项和为(

A. 4290 B. 4160 C. 2145 D. 2080

查看答案和解析>>

科目: 来源: 题型:

【题目】从岳阳到郴州的快速列车包括起始站和终点站共有六站,将这六站分别记为.有一天,张兵和其他18 名旅客乘同一车厢离开岳阳,这些旅客中有些是湖北人,其他的是湖南人,认识所有同车厢旅客的张兵观测到:除了终点站,在每一站,当火车到达时,这节车厢上的湖南人的数目与下车旅客的数目相同,且这次行程中没有新的旅客进入这节车厢.张兵又进一步观测到:当火车离开站时,车厢内有 12名旅客;当火车离开站时,还有 7 名旅客在这一车厢内;当他准备在站下车时,还有5名旅客在这一车厢内.试问开始时火车的这一节车厢有多少湖北人,有多少湖南人?且在旅途中这些数目如何变化?

查看答案和解析>>

科目: 来源: 题型:

【题目】凸多面体的每个面均为三角形,每条棱上均标记字母之一,且每个面的三条边上恰各有一个。对每一个面,当旋转多面体使该面在我们眼前时,按照字母顺序观察其三边,若是逆时针方向,则称其为正面;否则,称其为反面。证明:正面与反面的数目之差能被4整除。

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,的内切圆于边分别切于点的中点分别为交于点。证明:的外接圆与的内切圆相切。

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

() 1是关于x的方程的一个解,求t的值;

() 时,解不等式

()若函数在区间(-1,2]上有零点,求t的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为正整数,记平面点集.问:平面内最少要有多少条直线,它们的并集才能包含,但不含点?

查看答案和解析>>

科目: 来源: 题型:

【题目】某单位选派甲乙丙三人组队参加知识竞赛,甲乙丙三人在同时回答一道问题时,已知甲答对的概率是,甲丙两人都答错的概率是,乙丙两人都答对的概率是,规定每队只要有一人答对此题则该队答对此题.

1)求该单位代表队答对此题的概率;

2)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错得分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其他题没有影响,求该单位代表队必答题得分的均值(精确到1)

查看答案和解析>>

科目: 来源: 题型:

【题目】012345这六个数字,完成下面三个小题.

1)若数字允许重复,可以组成多少个不同的五位偶数;

2)若数字不允许重复,可以组成多少个能被5整除的且百位数字不是3的不同的五位数;

3)若直线方程中的ab可以从已知的六个数字中任取2个不同的数字,则直线方程表示的不同直线共有多少条?

查看答案和解析>>

科目: 来源: 题型:

【题目】中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知集合为平面内的一个有限点集, 为平面内的一个正三角形,集合,且.若对任意满足条件的集合S,均可以被正三角形的两个平移图形覆盖,证明:集合可以被正三角形的两个平移图形覆盖.

查看答案和解析>>

同步练习册答案