相关习题
 0  262976  262984  262990  262994  263000  263002  263006  263012  263014  263020  263026  263030  263032  263036  263042  263044  263050  263054  263056  263060  263062  263066  263068  263070  263071  263072  263074  263075  263076  263078  263080  263084  263086  263090  263092  263096  263102  263104  263110  263114  263116  263120  263126  263132  263134  263140  263144  263146  263152  263156  263162  263170  266669 

科目: 来源: 题型:

【题目】珠算之父程大位是我国明代著名的数学家,他的应用巨著《算法统综》中有一首竹筒容米问题:家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节竹的容积为

A. 2.2B. 2.3

C. 2.4D. 2.5

查看答案和解析>>

科目: 来源: 题型:

【题目】一个几何体的三视图如图所示,若该几何体的外接球表面积为,则该几何体的体积为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数的定义域是,有下列四个命题,其中正确的有(

A.对于(0),函数上是单调增函数

B.对于(0),函数存在最小值

C.存在(0),使得对于任意,都有成立

D.存在(0),使得函数有两个零点

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)当时,若上有零点,求实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆的左、右焦点分别是,点在椭圆上, 是等边三角形.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)点在椭圆上,线段与线段交于点,若的面积之比为,求点的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,记函数上的最大值为,最小值为,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】2020年,我国继续实行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息、住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取50人调查专项附加扣除的享受情况.

(Ⅰ)应从老、中、青员工中分别抽取多少人?

(Ⅱ)抽取的50人中,享受至少两项专项附加扣除的员工有5人,分别记为.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这5人中随机抽取2人接受采访.

员工

项目

A

B

C

D

E

子女教育

×

×

继续教育

×

×

×

大病医疗

×

×

×

住房贷款利息

×

×

住房租金

×

×

×

赡养老人

×

×

×

1)试用所给字母列举出所有可能的抽取结果;

2)设为事件抽取的2人享受的专项附加扣除全都不相同,求事件发生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是圆O的直径,C是圆上的点,平面PAC⊥平面ABCPAAB.

1)求证:PA⊥平面ABC

2)若PA=AC=2,求点A到平面PBC的距离.

查看答案和解析>>

科目: 来源: 题型:

【题目】据统计,某5家鲜花店今年4月的销售额和利润额资料如下表:

鲜花店名称

A

B

C

D

E

销售额x(千元)

3

5

6

7

9

利润额y(千元)

2

3

3

4

5

1)用最小二乘法计算利润额y关于销售额x的回归直线方程=x+

2)如果某家鲜花店的销售额为8千元时,利用(1)的结论估计这家鲜花店的利润额是多少.

参考公式:回归方程中斜率和截距的最小二乘法估计值公式分别为

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为了鼓励学生热心公益,服务社会,成立了“慈善义工社”.2017年12月,该校“慈善义工社”为学生提供了4次参加公益活动的机会,学生可通过网路平台报名参加活动.为了解学生实际参加这4次活动的情况,该校随机抽取100名学生进行调查,数据统计如下表,其中“√”表示参加,“×”表示未参加.

(Ⅰ)从该校所有学生中任取一人,试估计其2017年12月恰参加了2次学校组织的公益活动的概率;

(Ⅱ)若在已抽取的100名学生中,2017年12月恰参加了1次活动的学生比4次活动均未参加的学生多17人,求的值;

(Ⅲ)若学生参加每次公益活动可获得10个公益积分,试估计该校4000名学生中,2017年12月获得的公益积分不少于30分的人数.

查看答案和解析>>

同步练习册答案