科目: 来源: 题型:
【题目】西北某省会城市计划新修一座城市运动公园,设计平面如图所示:其为五边形,其中三角形区域为球类活动场所;四边形为文艺活动场所,,为运动小道(不考虑宽度),,千米.
(1)求小道的长度;
(2)求球类活动场所的面积最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知直线l:与拋物线C:相切.
(1)求拋物线方程;
(2)斜率不为0的直线经过拋物线C的焦点F,交抛物线于两点A,B,拋物线C上是否存在两点D,E关于直线对称.若存在求出斜率k的取值范围;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】电子芯片是“中国智造”的灵魂,是所有整机设备的“心脏”.某国产电子芯片公司,通过大数据分析,得到如下规律:生产一种高端芯片x()万片,其总成本为,其中固定成本为800万元,并且每生产1万片的生产成本为200万元(总成本=固定成本+生产成本),销售收入(单位:万元)满足假定生产的芯片都能卖掉.
(1)将利润(单位:万元)表示为产量x(单位:万片)的函数;
(2)当产量x(单位:万片)为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
科目: 来源: 题型:
【题目】已知点P是椭圆上的动点,、为椭圆的左、右焦点,O为坐标原点,若M是的角平分线上的一点,且F1M⊥MP,则|OM|的取值范围是( )
A.B.C.D.
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)利用“五点法”画出函数在长度为一个周期的闭区间的简图.
列表:
x | |||||
y |
作图:
(2)并说明该函数图象可由的图象经过怎么变换得到的.
(3)求函数图象的对称轴方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.
(1)求1名顾客摸球2次摸奖停止的概率;
(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】《九章算术》是我国古代数学文化的优秀遗产,数学家刘徽在注解《九章算术》时,发现当圆内接正多边行的边数无限增加时,多边形的面积可无限逼近圆的面积,为此他创立了割圆术,利用割圆术,刘徽得到了圆周率精确到小数点后四位3.1416,后人称3.14为徽率,如图是利用刘徽的割圆术设计的程序框图,若结束程序时,则输出的为( )(,,)
A. 6 B. 12 C. 24 D. 48
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com