科目: 来源: 题型:
【题目】已知曲线C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.
(1)求证:曲线C都表示圆,并且这些圆心都在同一条直线上;
(2)证明:曲线C过定点;
(3)若曲线C与x轴相切,求k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形是边长为的正方形,为等腰三角形,,平面平面,动点在棱上,无论点运动到何处时,总有.
(1)试判断平面与平面是否垂直,并证明你的结论;
(2)若点为中点,求三棱锥的体积.
查看答案和解析>>
科目: 来源: 题型:
【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足
(1)将利润表示为产量万台的函数;
(2)当产量为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
科目: 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】 某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上,每隔30分钟抽一包产品,称其重量是否合格,分别记录抽查数据如下(单位:千克):
甲车间:102,101,99,98,103,98,99.
乙车间:110,115,90,85,75,115,110.
(1)这种抽样方式是何种抽样方法;
(2)试根据这组数据说明哪个车间产品较稳定?
查看答案和解析>>
科目: 来源: 题型:
【题目】 2013年春节前,有超过20万名来自广西、四川的外来务工人员选择驾乘摩托车沿321国道返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个休息站,让过往的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就对其省籍询问一次,询问结果如图所示:
(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?
(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?
查看答案和解析>>
科目: 来源: 题型:
【题目】一组数据中的每一个数据都乘以2,再减去80,得到一组新数据,若求得新的数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )
A.40.6,1.1B.48.8,4.4C.81.2,44.4D.78.8,75.6
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,对称轴为直线的抛物线与轴交于两点,其中点的坐标为,与轴交于点,作直线.
(1)求抛物线的解析式;
(2)如图,点是直线下方抛物线上的一个动点,连结.当面积最大时,求点的坐标;
(3)如图,在(2)的条件下,过点作于点交轴于点将绕点旋转得到在旋转过程中,当点或点落在轴上(不与点重合)时,将沿射线平移得到,在平移过程中,平面内是否存在点使得四边形是菱形?若存在,请直接写出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】将边长为3的正的各边三等分,过每个分点分别作另外两边的平行线,称的边及这些平行线所交的10个点为格点.若在这10个格点中任取个格点,一定存在三个格点能构成一个等腰三角形(包括正三角形).求的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com