科目: 来源: 题型:
【题目】在正方体中,是棱的中点,是侧面内的动点,且与平面的垂线垂直,如图所示,下列说法不正确的序号为__________
①点的轨迹是一条线段.②与是异面直线.
③与不可能平行.④三棱锥的体积为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知在平面直角坐标系中,曲线的参数方程为(为参数),以轴的非负半轴为极轴,原点为极点建立极坐标系,两种坐标系中取相同的长度单位,若直线和 分别与曲线相交于、两点(,两点异于坐标原点).
(1)求曲线的普通方程与、两点的极坐标;
(2)求直线的极坐标方程及的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】“中国剩余定理”又称“孙子定理”.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”,“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2030这2030个自然数中,能被3除余1且被4除余1的数按从小到大的顺序排成一列,构成数列,则此数列共有( )
A.168项B.169项C.170项D.171项
查看答案和解析>>
科目: 来源: 题型:
【题目】[2019·潍坊期末]某钢铁加工厂新生产一批钢管,为了了解这批产品的质量状况,检验员随机抽取了100件钢管作为样本进行检测,将它们的内径尺寸作为质量指标值,由检测结果得如下频率分布表和频率分布直方图:
分组 | 频数 | 频率 |
25.05~25.15 | 2 | 0.02 |
25.15~25.25 | ||
25.25~25.35 | 18 | |
25.35~25.45 | ||
25.45~25.55 | ||
25.55~25.65 | 10 | 0.1 |
25.65~25.75 | 3 | 0.03 |
合计 | 100 | 1 |
(1)求,;
(2)根据质量标准规定:钢管内径尺寸大于等于25.75或小于25.15为不合格,钢管尺寸在或为合格等级,钢管尺寸在为优秀等级,钢管的检测费用为0.5元/根.
(i)若从和的5件样品中随机抽取2根,求至少有一根钢管为合格的概率;
(ii)若这批钢管共有2000根,把样本的频率作为这批钢管的频率,有两种销售方案:
①对该批剩余钢管不再进行检测,所有钢管均以45元/根售出;
②对该批剩余钢管一一进行检测,不合格产品不销售,合格等级的钢管50元/根,优等钢管60元/根.
请你为该企业选择最好的销售方案,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为,,椭圆的长轴长与焦距之比为,过且斜率不为的直线与交于,两点.
(1)当的斜率为时,求的面积;
(2)若在轴上存在一点,使是以为顶点的等腰三角形,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知圆,直线.
(1)求证:对直线与圆总有两个不同的交点;
(2)是否存在实数,使得圆上有四个点到直线的距离为?若存在,求出的范围,若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】以直角坐标系的原点为极点, 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,点的极坐标为,圆以为圆心,4为半径;又直线的极坐标方程为。
(Ⅰ)求直线和圆的普通方程;
(Ⅱ)试判定直线和圆的位置关系.若相交,则求直线被圆截得的弦长.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线与圆相切,圆心的坐标为.
(1)求圆的方程;
(2)设直线与圆没有公共点,求的取值范围;
(3)设直线与圆交于、两点,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com