相关习题
 0  263061  263069  263075  263079  263085  263087  263091  263097  263099  263105  263111  263115  263117  263121  263127  263129  263135  263139  263141  263145  263147  263151  263153  263155  263156  263157  263159  263160  263161  263163  263165  263169  263171  263175  263177  263181  263187  263189  263195  263199  263201  263205  263211  263217  263219  263225  263229  263231  263237  263241  263247  263255  266669 

科目: 来源: 题型:

【题目】2020110日,引发新冠肺炎疫情的COVID-9病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为,假设每次接种后当天是否出现抗体与上次接种无关.

1)求一个接种周期内出现抗体次数的分布列;

2)已知每天接种一次花费100元,现有以下两种试验方案:

①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为元;

②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为元.

比较随机变量的数学期望的大小.

查看答案和解析>>

科目: 来源: 题型:

【题目】依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.

试估计该河流在8月份水位的中位数;

1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;

2)该河流域某企业,在8月份,若没受12级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.

现此企业有如下三种应对方案:

方案

防控等级

费用(单位:万元)

方案一

无措施

0

方案二

防控1级灾害

40

方案三

防控2级灾害

100

试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在三棱锥中,的中点,平面,垂足是线段上的靠近点的三等分点.已知

(1)证明:

(2)若点是线段上一点,且平面平面.试求的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知圆C经过点A(﹣13),B(33)两点,且圆心C在直线xy+10上.

(1)求圆C的方程;

(2)求经过圆上一点A(﹣13)的切线方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】随着新高考改革的不断深入,高中学生生涯规划越来越受到社会的关注.一些高中已经开始尝试开设学生生涯规划选修课程,并取得了一定的成果.下表为某高中为了调查学生成绩与选修生涯规划课程的关系,随机抽取50名学生的统计数据.

成绩优秀

成绩不够优秀

总计

选修生涯规划课

15

10

25

不选修生涯规划课

6

19

25

总计

21

29

50

(Ⅰ)根据列联表运用独立性检验的思想方法能否有的把握认为“学生的成绩是否优秀与选修生涯规划课有关”,并说明理由;

(Ⅱ)如果从全校选修生涯规划课的学生中随机地抽取3名学生,求抽到成绩不够优秀的学生人数的分布列和数学期望(将频率当作概率计算).

参考附表:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

参考公式,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法正确的是( )

A. 命题“若,则”的否命题是“若,则

B. 命题“”的否定是“

C. 处有极值”是“”的充要条件

D. 命题“若函数有零点,则“”的逆否命题为真命题

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

的单调区间和极值;

时,若,且,证明:

查看答案和解析>>

科目: 来源: 题型:

【题目】如图正方体的棱长为1,线段上有两个动点,则下列结论错误的是(

A. 所成角为

B. 三棱锥的体积为定值

C. 平面

D. 二面角是定值

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

(I)讨论的单调性;

(II)当,是否存在实数,使得,都有?若存在求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知平面内两点M4,﹣2),N24).

1)求MN的垂直平分线方程;

2)直线l经过点A30),且与直线MN平行,求直线l的方程.

查看答案和解析>>

同步练习册答案