科目: 来源: 题型:
【题目】如图,已知椭圆 的左、右焦点分别为,,短轴的两端点分别为,,线段,的中点分别为,,且四边形是面积为8的矩形.
(Ⅰ)求椭圆的方程;
(Ⅱ)过作直线交椭圆于,两点,若,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系内,已知点,圆的方程为,点是圆上任意一点,线段的垂直平分线和直线相交于点.
(1)当点在圆上运动时,求点的轨迹方程;
(2)过点能否作一条直线,与点的轨迹交于两点,且点为线段的中点?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】某市民用水拟实行阶梯水价,每人用水量中不超过立方米的部分按4元/立方米收费,超出立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
(1)如果为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米, 至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知高中学生的数学成绩与物理成绩具有线性相关关系,在一次考试中某班7名学生的数学成绩与物理成绩如下表:
数学成绩 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理成绩 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(1)求这7名学生的数学成绩的极差和物理成绩的平均数;
(2)求物理成绩对数学成绩的线性回归方程;若某位学生的数学成绩为110分,试预测他的物理成绩是多少?
下列公式与数据可供参考:
用最小二乘法求线性回归方程的系数公式:,;
,,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列说法正确的个数是( )
①设某大学的女生体重与身高具有线性相关关系,根据一组样本数据,用最小二乘法建立的线性回归方程为 ,则若该大学某女生身高增加,则其体重约增加;
②关于的方程的两根可分别作为椭圆和双曲线的离心率;
③过定圆上一定点作圆的动弦,为原点,若,则动点的轨迹为椭圆;
④已知是椭圆的左焦点,设动点在椭圆上,若直线的斜率大于,则直线(为原点)的斜率的取值范围是.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是2018年第一季度五省GDP情况图,则下列描述中不正确的是( )
A. 与去年同期相比2018年第一季度五个省的GDP总量均实现了增长
B. 2018年第一季度GDP增速由高到低排位第5的是浙江省
C. 2018年第一季度GDP总量和增速由高到低排位均居同一位的省只有1个
D. 去年同期河南省的GDP总量不超过4000亿元
查看答案和解析>>
科目: 来源: 题型:
【题目】过抛物线的焦点且斜率为1的直线与抛物线交于、两点,且.
(1)求抛物线的方程;
(2)点是抛物线上异于、的任意一点,直线、与抛物线的准线分别交于点、,求证:为定值.
查看答案和解析>>
科目: 来源: 题型:
【题目】[2019·清远期末]一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:
温度 | 20 | 25 | 30 | 35 |
产卵数/个 | 5 | 20 | 100 | 325 |
(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);
(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)
参考数据:,,,,,,,,,,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系内,已知点,圆的方程为,点是圆上任意一点,线段的垂直平分线和直线相交于点.
(1)当点在圆上运动时,求点的轨迹方程;
(2)过点能否作一条直线,与点的轨迹交于两点,且点为线段的中点?若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com