科目: 来源: 题型:
【题目】在平面直角坐标系 xOy 中,已知椭圆 C:的离心率为,且过点 (,),点 P 在第四象限, A 为左顶点, B 为上顶点, PA 交 y 轴于点 C,PB 交 x 轴于点 D.
(1) 求椭圆 C 的标准方程;
(2) 求 △PCD 面积的最大值.
查看答案和解析>>
科目: 来源: 题型:
【题目】十九大提出对农村要坚持精准扶贫,至 2020 年底全面脱贫. 现有扶贫工作组到某山区贫困村实施脱贫工作. 经摸底排查,该村现有贫困农户 100 家,他们均从事水果种植, 2017 年底该村平均每户年纯收入为 1 万元,扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数. 从 2018 年初开始,若该村抽出 5x 户( x ∈Z,1 ≤x ≤ 9) 从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收入每户平均比上一年提高,而从事包装销售农户的年纯收入每户平均为 (3-x) 万元(参考数据: 1.13 = 1.331,1.153 ≈ 1.521,1.23 = 1.728).
(1) 至 2020 年底,为使从事水果种植农户能实现脱贫(每户年均纯收入不低于 1 万 6 千元),至少抽出多少户从事包装、销售工作?
(2) 至 2018 年底,该村每户年均纯收人能否达到 1.35 万元?若能,请求出从事包装、销售的户数;若不能,请说明理由。
查看答案和解析>>
科目: 来源: 题型:
【题目】在四棱锥 P - ABCD 中,锐角三角形 PAD 所在平面垂直于平面 PAB,AB⊥AD,AB⊥BC。
(1) 求证:BC∥平面 PAD;
(2) 平面 PAD⊥ 平面 ABCD.
查看答案和解析>>
科目: 来源: 题型:
【题目】在 △ABC 中,设 a,b,c 分别是角 A,B,C 的对边,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且
(1) 求角 C 的大小
(2) 若 c = 3, 求 △ABC 的周长的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】甲乙两人进行某种游戏比赛,规定:每一次胜者得1分,负者得0分;当其中一人的得分比另一人的得分多2分时即赢得这场游戏,比赛随之结束.同时规定:比赛次数最多不超过20次,即经20次比赛,得分多者赢得这场游戏,得分相等为和局.已知每次比赛甲获胜的概率为可,乙获胜的概率为.假定各次比赛的结果是相互独立的,比赛经次结束.求的期望的变化范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求直线与曲线公共点的极坐标;
(2)设过点的直线交曲线于,两点,且的中点为,求直线的斜率.
查看答案和解析>>
科目: 来源: 题型:
【题目】如表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费(万元)的几组对照数据:
(年) | 2 | 3 | 4 | 5 | 6 |
(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
参考公式:,.
(1)若知道对呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com